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ABSTRACT

The techniques of decision theor are applied to the problem of

constructing machines that improve their ability to recognize patterns by

extracting pertinent information from a previously unclassified sequence

of observations; such machines are said to learn without a teacher.

A general system solution is obtained which includes the solutions

to the problems of learning without a teacher, learning with a teacher,

and no learning. The solution has been extended to include problems in

which the unknown parameter is time varying, as well as problems in

which the probabilities of occurrence of the classes are unknown

a priori and must be learned. The resulting systems are shown to be

stable and to have performance which converges to the performance of

systems which have a priori knowledge of the unknown parameters being

learned. It has been demonstrated that for most cases either the optimum

system, or a suboptimum system which performs within an arbitrarily small

tolerance of the optimum system, is realizable in the sense that it

requires a finite memory.

The techniques of this paper are applied to examples of learning

problems in the communications, radar, and electromagnetic reconnaissance

fields.
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SYMBOLS

a the amplitude of a narrowband signal, a scalar random

variable

A the parameter of a Rayleigh distribution

(A i) a set of vector-valued unknown parameters

Ak the event P(8\ k) > P(eil\k) for all e, € 0 (see

Chapter III)

b(t) a known waveform of finite time-bandwidth product

B a known column vector with the sample values of b(t) as

elements

Bk the event P(6I\k) P(iV\k) for some 6i 8

c an unknown scalar parameter; also used as an index to

indicate "current value of"

C ~ a constant = A2/(A 2 R~ 2 1)

d divergence (see Chapter III)

d(.) a decision rule

D a constant = i/Sn(fi)
th

E(fi) a column vector with the m element = exp (j2tf im)

E(.) the expectation of the quantity within braces

f,f. the frequency of a sinusoid1

f(.) a function used to factor a statistic

919k the gain, or attenuation, of a randomly time-varying com-
munication channel. The index indicates the value is to

be taken at a particular time, kT.

g(.) a function used to factor a statistic

G a complex constant used to represent the operation of a

fading channel on a signal. The modulus of G is the
channel gain and the argument of G is the channel phase

shift.

h(.) a function used to factor a statistic
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h(t,Y) the response of a time-varying linear filter at time t
to an impulse applied at time y

.th
Hi  the i hypothesis

i an integral-valued index used to distinguish members of
a set

= - ; also used as an integer

J(f a column vector with the mth element = cos (2vf iMA)

k an integral-valued index used as a time index; e.g., gk

is the value of g observed at time kT

K covariance matrix

I th
k= i(Xkl?\k-l), the k value of the likelihood ratio con-

ditioned on the past

the likelihood ratio

L the loss associated with a false alarm relative to the loss
associated with a miss when the loss associated with a cor-
rect decision is zero

m an integral-valued index

M the number of possible classes

M the memory capacity required of a learning systemc

n(t) a noise waveform

N the column vector with samples of n(t) as elements

plpP2  the a priori probability of occurrence of hypotheses 1 and

2 respectively

p(.) a probability density distribution

P(.) a cumulative probability distribution

Pr(.) the probability that the indicated event will occur.

Occasionally a subscript is used to indicate the event,
such as PFA, which is the probability of a false alarm
occurring.

q an integral-valued index used to distinguish different pos-

sible values of the unknown parameter
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Q the number of possible values of the unknown parameter

rl,r 2  the limits of the range of a

R a generalized signal-to-noise ratio

s(t) a signal waveform of finite time-bandwidth product (may be
lowpass or bandpass)

S the column vector with samples of s(t) as elements

Sn(f) the noise spectral density

t the time variable; also used as a subscript on vectors to

indicate "transpose"

T a constant, the period of one observation; the duration of

a signal waveform

T(.) a function called a statistic

W the signal bandwidth if the center frequency of the signal

is known; the range of the center frequency if it is unknown

(W i) a set of weights on the taps of a delay line used to syn-
thesize a time-varying linear filter

x(t) the observed, or received, waveform which is to be classified

X the column vector with samples of x(t) as elements

Yl '= i - i-1

Y i a binary random variable

z a dummy variable

Zk) an ordered k-tuple with binary-valued components

zi
O= p2 /pl, the ratio of a priori probabilities

= LP2 /pl, the threshold; in one instance 7 is used as

a dummy time variable

7(') a dummy function used to obtain performance bounds

= /(2W), the sampling interval

6k =k "0 k-l' the k th perturbation in the unknown parameter
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a small quantity; subscripts are used to distinguish one
small quantity from another as necessary

(t) a complex, lowpass time waveform related to x(t) by the
equation x(t) = Re k (t) exp (jwot))

'I(t) a complex, lowpass time waveform related to n(t) in the
same way that (t) is related to x(t)

8 the unknown parameter

k  = (XI,X 2 ,..,Xk) which is used as a shorthand notation to
indicate that a probability density is conditioned by the
values of the past k observations

a dummy function used to obtain performance bounds

a moment-generating function

p,p(.) the average risk, a performance measure

T a time variable

0 a phase variable, used as the phase of a narrowband signal
and as the argument of the complex channel parameter G

()} a set of independent functions

(the set of all possible values of 0

W 21tf, the radian frequency variable

OTHER SYMBOLS

indicates conditioning; e.g., p(XIe) is the probability
density of X conditioned on the value of 8

indicates the true value of a parameter; e.g., 8 is the
true value of 8

indicates the real part of the associated symbol; e.g.,' )= -e (I(t))

indicates the imaginary part of the associated symbol; e.g.,
i(t) = m, [(t)}

indicates "is a member of"; e.g., 8 means 8 is a
member of the set T

(indicates a corruptive noise operation; eg., S ( N
indicates that a signal has been corrupted by the addition

or multiplication of noise
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I. INTRODUCTION

The purpose of this research has been to apply the techniques of

decision theory to the problem of constructing optimal machines which

improve their ability to classify patterns by extracting pertinent

information from a previously unclassified sequence of observations;

such machines learn without a teacher.

In recent years interest in classification problems and in machines

to automatically solve these problems has been intensified by the

development of a technology in which such problems occur more and more

frequently and the development of the analytical and physical tools with

which to solve the problems. As a particular example, the advent of the

intercontinental ballistic missile has made it mandatory that surveillance

systems operate as rapidly and accurately as possible; such systems

introduce a variety of classification problems. The development of

high-speed large-capacity digital computers has made it possible to per-

form extremely complex data processing in real time. It is anticipated

that both the number of classification problems and the capability of

the tools to solve these problems will increase in the next few years.

A. CLASSIFICATION PROBLEMS

In order to be more precise in the meaning of "optimum" and "learning

without a teacher," it is necessary to define the classification problem

in decision-theory terms: Given an object and a set of classes from

,which the object may have been drawn, determine the class from which the

object was drawn. To get a reasonable solution (by some criterion of

reasonableness) one must also be given some knowledge of the losses

which will be incurred if an improper determination is made.

In order to solve the problem some set of measurements must be

chosen. A particular set of measurements will be called an "observation"

and will be represented by a column vector X. (Each element of the

vector represents the measurement of a particular parameter, such as "the

amplitude of a voltage at time t " or "the color of the object." Thuso

the sptcification of a set of measurements may be thought of as the
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labeling of the coordinates of an observation space.) For the purposes

of this research it is assumed that the observation space is given (that

is, it is known which measurements to make), and the problem is to deter-

mine a way to process the observations to make a classification decision

which is in some sense "optimum."

In order to come to a definition of "optimum," some information must

be given regarding the losses associated with misclassification. For

this purpose it is assumed that a loss function which provides this

information is given. This loss function depends both on the decision

to place the object observed in a particular class and the actual class

from which the object was drawn. Thus there is a risk associated with

each particular decision.

A reasonable definition of the optimum system is that system which

minimizes the expected or average risk. Such a system is a realization

of a Bayes decision rule, and throughout this report the Bayes system

will be considered to be optimum.

When phrased in these terms, classification problems may be charac-

terized in terms of the probability measures induced on the observation

space by the different classes of objects. Thus if an object being

observed is a member of class 1 the observation X will have a cumula-

tive probability distribution, say P I(X); if the object belongs to

class 2 the observation will have a different cumulative probability

distribution, say P2 (X), etc. Three categories of decision problems

are possible:

1. The functional forms of the relevant probability measures may be
completely known.

tThroughout this report it is assumed that the cumulative probability
distributions are representable by probability density distributions;
e.g., for a scalar observation

P(X) fE,() i

Nhere the integral is taken in the Lebesgue-Stieltjes sense [Ref. i]
and the class of functions p(a) includes the delta function defined
by Middleton [Ref. 2].

SEL-65-011 - -



2. The functional forms may be completely unknown.

3. The functional forms may be known except for some set of unknown

parameters.

Problems which lie in the first category do not involve learning

because the solution is defined once the relevant probability measures

are known [Refs. 2, 3, 41. Problems in the second category are commonly

referred to as nonparametric. Although there are many important problems

in this category (e.g., speech recognition, medical diagnosis, weather

prediction) which have been investigated with varying degrees of success,

no systematic analytical approach hrs been developed for such problems.

Since it will be assumed that the functional forms of the probability

measures are known except for some set of parameters, the techniques

developed here will be applicable only to the third, or parametric, class

of decision problems.

B. DECISION MACHINES WHICH LEARN

A machine to solve the classification problem must be designed to

apply a decision rule to each observation. It seems clear that the deci-

sion rule should depend upon how much is known about the problem prior

to the time at which the classification decision is to be made. If the

problem is a parametric one, it is characterized by a set of probability

measures depending on an unknown parameter, say (p i(Xj); i = 1,2,...,M),

where @ is the pirameter. Suppose that this set is known, that an

observation is available, and that some a priori knowledge of the param-

eter [represented by an a priori distribution po(0)] is given. Then

a decision rule may be found using standard techniques [Refs. 2, 3, 41.

If, in addition, a sequence of observations, (XIX 2,., X k) is

available, and if this sequence contains information concerning 0, this

information may be extracted and used to modify the decision rule. This

may be accomplished by using the sequence of observations (which shall be

called a learning sequence and designated by Xk) to compute a sequence

of conditional distributions of (:

3 - SEL-65-011



This sequence of distributions defines a sequence of decision rules, and

the resulting machine may be said to "learn."

It is desirable to make a distinction between two modes of learning.

A machine which learns with a teacher is provided with two pieces of

information: (1) a learning sequence and (2) the correct classification

of each member of the sequence. A machine which learns without a teacher

is not given the latter information. Thus a machine which learns without

a teacher may utilize only that information which is available prior to

receiving the first observation or which is contained in the learning

sequence. In contradistinction, a machine which learns with a teacher

must be externally aided.

There are many problems in which our external means of classification

is either poor or nonexistent. If the machin which is built to solve

these problems must make repetitive decisions, then sooner or later an

observation sequence will become available. If there is any information

in one observation concerning other observations, and if we desire a

machine which takes advantage of this information, then we require a

system which learns without a teacher. (The nature of these problems

excludes machines which must be trained.)

There are also problems that require a machine which continues to

improve in performance after it has been placed in operation. Included

in this class are problems in which the characteristics of the pattern

to be recognized are changing with time. A machine could be trained

during operation only if the correct classification of each new observa-

tion were known, but if this were the case we would not need the machine.

These types of problems provide a compelling motivation for this

research which is concentrated on the synthesis of machines which learn

without a teacher.

C. RELATED WORK

One of the first engineering problems which led to development of a

recognized adaptive system was that of communication through a random

channel. In 1956 Price [Ref. 5] and later Price and Green [Ref. 6),

using a unique combination of theoretical analysis and engineering

SEL-65-OII - 4 -



intuition, developed an adaptive receiver called RAKE which effec-

tively reduced the difficulty of communication through random multipath

channels by estimating some of the channel properties while receiving

signals. Kailath [Refs. 7 and 8] derived an optimum receiver for the

same problem and showed that it exhibited adaptive properties. He also

pointed out that the RAKE receiver was closely related to the optimum

receiver. Proakis and Drouilhet [Ref. 91 simulated two types of binary

communication systems using decision-directed feedback to learn the

unknown phase of a received signal; they have derived error probabilitieE

which verify that systems of this nature are in some cases superior to

nonadaptive systems, Scudder, in 1964 [Ref. 101, derived the optimum

learning receiver for the same communication problem; however, in the

form he derived, the receiver grows exponentially (see Chapter II). For

this reason Scudder proposed and analyzed a decision-directed learning

scheme.

In 1961 Glaser [Ref. ll] used a combination of decision-theoretic and

intuitive arguments to arrive at an adaptive machine to learn unknown

repetitive waveforms in a background of noise. Jackowatz, Shuey, and White

[Ref. 12] invented a machine for the same purpose in 1961. Both of these

machines learn with a teacher, using decision-directed feedback as the

teacher. Hinich [Ref. 13] performed an analysis of the Jackowatz machine

in 1962, and later [Ref. 14] modified the mathematical model to obtain a

more precise analysis.

The work which is most closely related to the research presented here

was initiated by Braverman in 1961 [Ref. 15]. Braverman examined the

problem in which a previously classified learning sequence is available

(learning with a teacher), and established the fact that the solution

which uses all'relevant observations to condition the a posteriori

probabilities, achieves the minimum average risk. He also established

the convergent properties of this solution. This work was extended by

Abramson and Braverman [Ref. 16] and applied to the problem of learning

the vector mean of a random vector which was normally distributed. In

1963 Keehn [Ref. 17] solved the more general learning problem in which

the random vector is normally distributed with both unknown mean and

- 5 -. SEL-65-011



covariance matrix. At the same time Spragins [Ref. 18] generalized the

approach of Abramson and Braverman in a different direction to obtain

the solution to the general parametric learning (with a teacher) problem

in which a fixed-size (nontrivial) sufficient statistic exists.

While work on the learning with a teacher problem was continuing,

Daly [Refs. 19 and 20] in 1961 used a decision-theory approach (the

"Bayes" approach used by Braverman) to attack the learning without a

teacher problem. Daly solved the one-dimensional binary detection prob-

lem and established the convergence of the solution; however, he also

demonstrated that his solution required a system which grew exponentially

with the number of learning observations. Both Daly and Scudder turned

their attention to systems which, like the majority of those proposed to

solve the learning problem without a teacher, use decision feedback as

a teacher to aid in the learning process. A more complete explanation

of the exponentially growing system will be found in Chapter II.

In this investigation we have taken the so-called Bayes approach

(explained in Chapter II) which was used by othtz investigators [Refs.

10, 15-20], and we have concentrated on the learning without a teacher

problem. One of the most important results is the fact that in many

problems this approach does lead to systems of fixed size. In problems

in which the system size must grow, a change in the formulation of the

problem will result in fixed-size systems. This change requires that we

approximate the space of the unknown parameter; however the performance

of the resulting fixed-size system is in an engineering sense equivalent

to the growing system.

D. ORGANIZATION, APPROACH, AND SIGNIFICANT RESULTS

In the first portion of this report (Chapters II and III), the equa-

tions describing the learning system are derived and then applied to

signal-detection problems in which an important signal parameter is

unknown but fixed. The performance of such a system is discussed. In

the second part, which consists of Chapters IV, V, and VI, the equations

are applied to problems in which the important unknown parameter is time

varying. The stability, convergence, and realizability of the general

learning system are discussed.
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The investigation of the learning problem is initiated by defining

a suitably general, repetitive binary decision problem depending upon an

unknown parameter which is fixed. This parameter is treated as a random

variable, and an a priori probability distribution is chosen to describe

the initial state of knowledge of the parameter. As more and more

observations are received, more and more information concerning the

parameter is obtained; thus the observations "condition" the probability

distribution of the parameter. By developing a recursive expression

which describes this unfolding sequence of conditional probability dis-

tributions, a mathematical description of the learning process is obtained;

and by utilizing this recursive expression, a learning system is synthe-

sized.

This technique is applied to two examples in order to illustrate the

types of problems that are readily solved. The first example involves the

detection of a signal of known waveform but unknown amplitude embedded in

noise. It has been chosen to illustrate the technique as simply as pos-

sible. The second example involves the detection of a narrowband signal

of unknown frequency embedded in noise. It has been chosen as an example

of a problem which frequently occurs in the electronic-countermeasures

and reconnaissance fields, which is readily solved by the proposed tech-

nique, but which has not been attacked successfully by any other means

[Ref. 21].

The investigation is continued by extending the development to (1) the

"learning" problem in which the a priori probabilities of occurrence

of the alternative hypotheses are unknown, and (2) the repetitive multiple-

hypothesis decision problem.

In the third chapter techniques for the evaluation of system performance

are discussed briefly. An example is presented of the performance bounds

of a system that detects the presence of a narrowband signal of unknown

frequency in bandlimited white gaussian noise. Thus this latter example,

which is used in both Chapters II and III, may be used to present a sort

of overview of the major contribution of this research to the reader

familiar with the so-called Bayes approach to the decision problem.

Succeeding chapters are extensions of the solution and developments

of the properties of the resulting system.
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In the fourth chapter the technique is extended to include problems

in which the unknown parameter is randomly varying in time. Depending

upon the model of time variations, the resulting systems are simple

modifications of the learning systems for fixed parameters. The syn-

thesis technique is applied to examples of communications, radar, and

electronic reconnaissance problems.

In the fifth chapter the-size of the optimal learning system is

defined in terms of the number of elements required to construct the

system. It is shown that in many cases the optimal systems are of

finite size. In the cases where the optimum systems grow as the learning

sequence lengthens, it is shown that a suboptimum system can be con-

structed from a finite number of elements. In the sixth chapter it is

shown that the finite suboptimum system has a performance which is not

measurably different from the optimum system. Thus from an engineering

standpoint the optimum learning system may always be realized from a

finite number of elements.

Other properties of learning systems are presented in the sixth

chapter. The systems are stable and converge in performance so that as

the learning sequence lengthens the performance of the learning system

is equivalent to the performance of a system which is given a priori

knowledge of the unknown parameter.
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II. DEVELOPMENT OF THE LEARNING SYSTEM

As was pointed out in Chapter I, there are many repetitive decision

problems in which an important parameter is unknown and in which external

aid is not available from which to obtain a representative set of properly

classified "learning" observations. Such problems require systems which

learn without a teacher, and it is the purpose of this chapter to develop

and explain a general technique for the synthesis of such systems. The

technique developed is based on the assumption that the unknown parameters

are either time invariant, or so slowly time varying that they may be

treated as being fixed. The more difficult time-varying unknown-parameter

problem is investigated in Chapter IV.

A. THE LEARNING PROBLEM MODEL (BINARY DECISIONS)

In order to explain the techniques involved in the synthesis of

learning systems, we first consider the binary decision problem. We

shall phrase the problem in terms of detection of a signal which depends

upon a set of unknown parameters; however, the result will be easily

generalized.

Assume that we are given an observation representable by the column

vector X and a learning sequence k-1 = (Xl,X2 ,...,XkI), consisting

of the first (k-l) such vectors. Each observation contains a signal

corrupted by noise, or it contains noise alone, and we desire to synthe-

size a system to decide whether or not the kt h observation Xk contains

a signal. We assume that our system may make mistakes, and that each

mistake costs something which may be expressed in terms of a function

which depends on the actual situation as well as the decision. We ask

for a system which will minimize the average risk associated with each

decision; i.e., we require a system which is optimum in the Bayes sense

at every decision instant. The system which performs this minimization

computes the likelihood ratio and compares it to some threshold. To be

more precise, we let
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H = the hypothesis that Xk = S(G) ( N

H2 = the hypothesis that Xk = N

where

S(O) = the signal vector (unknown parameters)

0 = unknown signal parameters

N = the noise vector

= the corrupting operation (addition,

multiplication, etc.)

Then, if the signal parameters were known, the optimum system would com-

pute the ratio of conditional probabilities, or likelihood ratio [see

Ref. 4]:

£(xkle) = P(XkH 1 ,) (2.1)

and compare it to a threshold depending upon the relative loss associated

with the two types of errors (false alarm and miss) and the a priori

probability of occurrence of the two hypotheses.

If the signal were random with known distribution p(O), the optimum

system would compute an average likelihood ratio Lsee Ref. 41:

i(xk) =f (xke) p(e) dO (2.2)

In the problem at hand, when we wish to take advantage of all prior

information, we may easily show that the optimum system computes a con-

ditional likelihood ratio [Ref. 15, pp. 12-16], that is, a ratio of

probabilities conditioned on the past:

4(X 1 \ P(X k k-lH1)  (.3
k k-l P(X H7\

Ep(L5Xkl,0 2 ) (2.3)
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This may be rewritten in a more useful form as a conditional expectation:

4(xkh kl) f (Xk~e) P(eV\k-l) de (2.4)

We have assumed that e is the only unknown parameter; hence, if we were

given e we could learn nothing from \k.1; thus (Xkljekl) = £(Xkle).t

The synthesis of a system which will compute this latter function is a

standard problem of detection theory, and solutions are usually known.

The problem of interest involves the synthesis of a system to compute

k-1).

B. AN EXPONENTIALLY GROWING SOLUTION

In order to understand the difficulty which arises when we attempt to

synthesize a system to compute p(e\ l), we may take the following

approach (suggested by Daly [Refs. 19, 20] and Scudder [Ref. 10]). Sup-

pose that we knew which members of the sequence lXIX 2,... X kI) con-

tdined a signal. Then we could use these members in a machine which

learned with a teacher (Refs. 14, 15, and 16 tell us how to construct

such machines). If we lack knowledge to learn with a teacher, we may

still build 2 k -  machines which learn with a teacher, partition the

sequence into the 2k 'l possible ways in which the (k-i) observations

might be classified, and feed one partition into each machine. Each

partition will have a known probability of occurrence; thus if we weight

the output of the 2 k -  learning machines by the appropriate probabili-

ties of occurrence and sum, we will have solved the problem. Clearly,

the resulting system will grow exponentially as we add more learning

observations.

tThis amounts to an assumption of conditional independence which may be
written

P(Xl,x 2,...,Xk ,Hl) = p(x1! ,11l) p(x2h?,H ) ... p(x10,H1 )
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To be more precise, we define a binary random vector Z (k) such that
i

it has k components. Each component has the value 1 or 0 depending

respectively upon whether the signal is or is not present in the obser-

vation which that component represents. [The sequence <present, not

present, present> is represented by the vector <101> = Z(3).]

Zk) is an ordered k-tuple with binary-valued components, and there

1 k (k) (k)are 2 possible Z k). These may be ordered by letting Z k equal1k

the binary expansion of i as i varies from 0 to 2k - 1. By con-
(k)

ditioning the distribution p(OI\ k-1) on the random vector Z(k) and
1

averaging over all i, we obtain

2k-l I

p(OI7\kl) = p(e ~lz (k-1) p(k-1~) (2.5)

i=0

Thus (2.4) may be rewritten as

2 k - l -1

i=0

(2.6)

Both of the conditional distributions in (2.6) may be expanded in terms

of known functions; e.g.,

p~zkl)~kl = ~(k-lIzkl)) ((kl)) (.a
k-) 2k-l -

-ll

i=0

EL-! fp(Iz PO () d@ (2.7b)
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k-i

p? k-l ikl1)' 0) p fi j pxI Z )) (2.7c)
j=l

r .th (k-1)p(xjHle) if i component of Z 1

-p(XjIH 2 ) if jt component of (kl) 0

(2.7d)

Thus from (2.6) a system may be synthesized. Unfortunately, the system

will grow exponentially as the learning sequence lengthens. That is,

2k computations are required for the optimum utilization of k learni-ng

observations. As the length of the learning sequence increases, the

system grows in size very rapidly, and for this reason it does not seem

practical for large values of k. When we are interested only in small

values of k, however, this type of system may be quite practical, and

may even result in a less complex system than the one which we shall

describe in the next section.

The conclusion that optimal machines which learn without a teacher

are impractical for large k might seem to follow from the above argu-

ment. In fact, however, this is not the case as will be demonstrated in

the next paragraph.

C. A RECURSIVE SOLUTION

In order to obtain a system of fixed size, we return our attention

to p(ejNk-1) and proceed as follows.

p(eIXk-l) = p(e1XIX 2, .... xk-l) (2.8a)
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or by Bayes2 law,

k-1 ~ ~ PX k-lXl'...,Xk-2)

P(x k-l 1, \k-2) p(e1 k-2) (2.8b)
- P(X klP~k-2)

Consider the conditional density p(xk -l fe, k-2 ) There are two possi-

bilities for X k-l: H 1  may be true or" H 2may be true. Thus

P(x k-1 1, \k-2) may be written as a mixture:

P(x k-110'\k-2) = p(Hl) P(Xkll HI,e.2\k-2) , p(H 2 ) P(Xk-1lH 2",?\k-2 )
(2.9)

In Eq. (2.9) we have assumed that p( )and p(H 2 ) are known a priori.

In many interesting problems this is not the case. The problem where

p(H 1 ) and p(H 2 ) are not known a priori is treated later in this

chapter. If H Iis true and e is known, then X kldoes not depend

on \k-'The noise is independent of the signal; therefore, if H i s

true, X kldoes not depend on either e or ?\ k-2; thus

P(x klje)\k-2) = p(Hl) P(xklle1,Hl1 + P(x k-1IH 2  p(H 2) (2.10)

By similar reasoning we may write

P(X kl e,2 -k-2) = p(H 1) P(xkl JHV k- ) + p(H 2) p(Xk- JH 2 (2.11)

Finally, by factoring and rewriting (2.8b), (2.10), arid (2.11) we have

P( e X,\k -Ie P(OAk2  (2.12)

SEL-635-011 - 14-



where a = P(H2 )/p(H 1 ). The importance of Eq. (2.12) lies in the fact

that it has a recursive form. This fact will allow synthesis of a system

in delay-feedback form. As discussed in Chapter V, the system may be

realized if the number of usefully distinguishable possible 
values of

e is finite.

If we review the computations required of this system which 
learns

without a teacher, we find that we are in a position to 
synthesize the

system. The computations required are:

1. Compute £(Xk[e) for each possible e

2. Compute p(OL?k-) for each possible a

3. Weight (1) by (2) and sum over all e.

The third computation will result in L(xklk-l). We have assumed that

we know how to compute £(Xkle). Suppose that somehow we could obtain

g(Xk l~Ik.2) and p(ek-2 ), then the system of Fig. 1 would provide

the desired p(l\ k-l ) .

p Ol'k-2)

33374

FIG. 1. A SYSTEM TO COMPUTE p(eL k-1).

In Fig. 1 and throughout this report, the symbol 4 has been

used to indicate a zero-memory device which has as an output 
the ratio

of the two inputs. The input marked "n" is the numerator, that marked

"d" is the denominator. The multipliers - and adders

are also zero-memory devices.

If we simply store p(ehkkl), we will have it available for com-

putation of p(eIk ) when the next vector X k+ is received. Similarly,

if we store (x kle), it will be available when Xk+l is received. The

system shown in Fig. 2 is one form of the required learning 
system.
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COMPUTE i(Xkle)INERTX kj (X I ) OVER (Xk I Xk_-0

VARY OVERIfPXIk1
ALL 8 STORE STORE INSERT I STORE

i %(8) I2

33373
FIG. 2. A BINARY DETECTOR WHICH LEARNS WITHOUT A TEACHER

(SEQUENTIAL FORM).

There are several facts concerning this system which, although self-

evident, should be considered. First, the computation of 9(XIO) and

p(ol\k-1) must be made for every possible value of e. The integrator
must be synchronized with the sequential variation of e. Second, when

the machine is started an initial distribution of e, or p (e), must

be inserted. This distribution may be uniform over e, or it may have

any convenient form consistent with our a priori knowledge of 0.

The fact that the computation of .(X1G) and p(oL k-l) must be

made for every possible value of 0 poses a difficult problem. If 0

varies in a continuous space, there will be an uncountable infinity of

possible values, and the various components of Fig. 2 will not be real-

izable exactly. We shall circumvent this problem by assuming that the

space of 0 can be quantized, so that the system need compute (XJe)

for only' a finite number of values of 0. Later, in Chapter V, we shall

demonstrate that a quantized space may always be chosen so that the per-

formance of a system based on this space will be arbitrarily close to

the performance of the theoretical system.

The assumption that the space of . has a finite number of points

allows us to represent the system in an alternative form as illustrated

in Fig. 3. In this form the system computes ,(Xjs) and p(l\ k-l) and

takes the product qimultaneously for all values of 0. The products thus
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formed are summed, and the result is £(Xk\k-l ). Both the sequential

and the parallel forms of the system will be used in the various examples

in this and following chapters.

33365

HIG. 3. A BINTARY DETECTOR WHICH LEARS WITHOUT A
TEACHER (PARALLEL FORM).

D. EXAMPLES

The system which has just been derived may be applied directly to a

wide variety of signal-detection problems. This application requires only

that we determine an explicit expression for L (XJe) and synthesize a

system to compute the expression. The following examples demonstrate this

procedure.
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1. Detection of a Signal of Unknown Amplitude

In this example we shall consider the problem of detecting a signal

of known waveform but unknown amplitude embedded in additive noise. Such a

problem might arise if we were to use for a communication channel a medium

which faded so slowly that the attenuation could be considered constant.

(For a more realistic consideration of the fading-channel communication

problem, and an application of this example, see example 1 of Chapter IV.)

We assume that the signal to be detected may be written as the prod-

uct of an unknown scalar and a known bandlimited waveform of duration T.

s(t) = cb(t)

where b(t) = known waveform of bandwidth W, duration T

c = unknown scalar

The signal is embedded in a background of additive, gaussian noise of zero

mean and covariance matrix K,

In our hypothetical problem we are given a received waveform x(t)

(perhaps an i-f amplifier voltage) which starts at time zero and continues

to the present. For simplicity we assume tha the signal is of duration

T and may only start at instants separated from a known synchronization

instant by integral multiples of T. The signal is transmitted at inter-

vals chosen at random, and our problem is to look at the received waveform

for a duration. T (x(t); (k-l)T 5 t - kT] and decide whether or not the

signal is present.

In order to easily manipulate the appropriate variables we shall

take advantage of the representation of continuous bandlimited waveforms

by vectors of the sample values of the waveform. We shall denote

s(O) b(O) n(O)

S B= N=

s' (TbTW

where n(t) is the noise waveform.
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We divide the received waveform into "observations" of duration

T, and denote these by the indexed vectors Xk

kk

Xkk

We define two hypotheses which apply to each observation:

H1 = the hypothesis that Xk = cB + Nk

H 2 = the hypothesis that Xk = Nk

The optimum learning system must compute the likelihood ratio, L(XIc),

which is given by

£(l) p(xlc H )1
i"(XIC = p(Xlc,H H) = exp ( C2 t -l + cXt 'l)

In order to vary the computation over all c, we restrict c to some

range, say r1 < c "' r 2 To easily construct the system we make c a

function of time, and integrate over time instead of c; that is, we

sweep c linearly from r1  to r 2. If we make the sweep period T

the same as the observation interval, synchronization will be much more

easily achieved. The resulting system is shown in Fig. 4.

In this system the input vector -X is transformed by the matrix

operator K -1/ 2 to yield the vector K X/2x. This vector is multiplied,

term by term, by the vector K -/2B and the terms summed (accumulated

for T sec) to provide X tK- IB. This product is a scalar and is the

value of the accumulator sampled at the appropriate instant. This sample

is held for T sec while the gains c are swept through the range.

During this period the contents of the accumulator are dumped and the
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X ( (2) K ACCUMULATE AND

K C

GAINS ARE !
SWEPT OVERi

1/2 Bt K-'I

a. The sweeping likelihood computer

INTEGRATE SAMPLE i(X kg)
xc) VERTAT T

I D UM AND HOLD

a a

b. The detection system

33364

FIG. 4. A LEARNING SYSTEM FOR DETECTION OF SIGNALS OF

UNKNOWN AMPLITUDE.

product involving the next observation is accumulated. Thus once every

T sec the parameter c is swept through its range (r to r 2) and

the output t(Xlc) is swept through the range of c.

2, Detection of a Narrowband Signal of Unknown Frequency

A problem which arises often in the different phases of electronic-

countermeasures, reconnaissance, and communications fields is the detection

of a narrowband signal of unknown frequency f, random amplitude, and
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random phase. The problem of detecting such a signal when only the

current observation is used has been discussed by Helstrom [Ref. 221f

and Wainstein and Zubakov [Ref. 231 among others. These authors suggest

the use of a receiver which uses a bank of narrowband filters centered

at each possible frequency. The filter output which is maximum is com-

pared to a threshold to determine whether a signal is present or not.

The performance of such a receiver (called a "maximum likelihood"

receiver by Helstrom) is evaluated by Wainstein and Zubakov. Such a

receiver is shown to have performance which is nearly as good as the

performance of the Bayes or average-likelihood receiver [Ref. 23] without

learning. In many cases, however, this performance is not adequate (see

Fig. 10 of Chapter III) and it is desirable to take advantage of the fact-

that the signal is recurring at the same frequency; that is, it is

desirable to apply the techniques of learning to the problem.

If we did not desire to use more than k past observations to
2k

learn, f, we could use 2 receivers constructed to learn the frequency

with a teacher as explained in Sec. B. (See also Refs. 19, 20, and 24.)

However for even moderate k such a receiver would be impractical.

In the following paragraphs we shall derive the optimum learning

receiver for this problem. We shall see that it consists essentially of

a bank of periodogram calculators (which are approximately narrowband

filters) whose outputs are the inputs to a bank of antilog devices. The

antilog device outputs are weighted by the learned probability distribu-

tion of frequency and summed. The sum is the desired likelihood ratio.

Mathematically, we proceed as follows.

Assume that the signal s(t) may be represented by a sample

function of a narrowband gaussian random process over the interval T

when the signal is present. The sample functions are independent from

one interval to the next, and the occurrence of a signal in one interval

is independent of its occurrence in other intervals. We also assume

that the signal can start only at times which are separated from a known

tFor other discussions of this problem see Refs. 21 and 24.
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synchronization instant by integral multiples of T. Thus over any

interval T the signal may be described by Eq. (2.13).t

s(t) = a cos (t + ) (2.13)

where a is a random variable with Rayleigh distribution:

p(a) = (2.14)

0 a < 0

€ is a uniformly distributed random variable

I 0 : 0 ! 2 T

p() = (2.15)

elsewhere

f = w/21 is unknown, except that it must be one of a discrete

set of frequencies (fl,f2,.. f Q)

The assumption of synchronization may be relaxed, and the syn-

chronization time treated as an unknown parameter. The problem becomes

much more complex, and would not serve as a good illustration at this

point. An alternative technique when synchronization is unknown is to

choose the interval T to be very short compared to the signal duration,

and to take into account the resulting signal dependence from interval

to interval. This latter approach may be accomplished by treating the

probability p(Hl) as a time-varying random parameter, thus combining

the techniques of this and the next chapter.

See Refs. 25, 26 for a description of the properties of narrowband
gaussian random processes. Equation (2.13) merely expresses the fact
that such a process may be described in terms of two independent

random variables, the amplitude and the phase.
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The noise is assumed to be additive and normally distributed

with covariance matrix K.

Because the problem is to observe the received waveform over

intervals of duration T and to make repetitive decisions at the end

of each interval, we define two hypotheses which apply to each obser-

vation:

H = the hypothesis that x(t) = s(t) + n(t)

H = the hypothesis that x(t) = n(t)

where x(t) = received waveform

n(t) = noise

The optimum learning system must compute the conditional likeli-

hood ratio:

Q
(XkLk-l)= L(x kfi) P(f i[?kl) (2.16)

i=l

th
where Xk is the k 2TW-dimensional column vector of samples of x(t)

sampled at the interval A = 1/(2W), and W is the bandwidth within

which the frequency must fall.

To synthesize a system to solve this problem, we must express

(Xjfi) and P(fi 'k-l) explicitly. This may be done as follows.

First we express (XkIa,4,fi) explicitly and then average over

a and ¢. To this end we may use p(a) and p( ) as defined in Eqs.

(2.14) and (2.15) since the current (kth) values of a and 0 are

independent of each other and of previous and future values of a and

4i. Thus

.(xk= I  f p(a) p() '(Xkla,f i) d da (2.17)
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Because of the normality of the noise, this integral may be carried out

to yield

(xklfi) =' exp C Xkt K'lE(fi)l (2.18)

where

c= A2

i 22
A R2 + 1

i

1 1

exp (j2tfiA) cos (21tfiA)

E(fi) = J(fi) =

exp (j21tfiT) cos (2 tfiT)

R. = (f i) K- J(f )

If the noise is stationary, K-1E(f i) represents the sampled-

data form of the output of a linear filter with system function the

reciprocal of the noise spectral density when exp (ji t) is the input.

Thus the effect of assuming that the noise is not white may be taken

into account by the introduction of a multiplicative constant (depending

on f ) in the exponent. Let S (f) be the noise spectral density, then

i N

i(Xk If = exp Di IXtE(fi)121 (2.19)

where Di = 1/(SN(fi)). The quantity lXtE(f i) may be recognized as

being proportional to the sampled-data form of the periodogram of x(t),

since
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2TW 2 2 'fTXt

IXtE(fi)I , x(mA) exp (jwimA) 4W2 f x(t) exp (jit) dt

(2.20)

and the periodogram (at f = f i) is defined as

1 T
Per [x(t)] = - x(t) exp (jwt) dt (2.21)

i T Iif

Hence the system is required to compute the periodogram of x(t) at

each of the frequencies (f ; i = 1,2,...,Q), to weight each of these

computations by CiDi/2 , to take the antilog of the result, and to

weight the antilog by Ci/A 2. This operation may be performed sequentially

by a single circuit or in parallel by a bank of Q circuits. (If it is

performed sequentially and if the frequencies are taken to be a set within

the band W separated by 1/2T cps, the circuit required may be identi-

fied as a form of time-compressive sweeping receiver which sweeps the

band W in time T with resolution l/T [Refs. 23, 24]. The construc-

tion of such a receiver is quite possible; however it may be somewhat

confusing to introduce the concept at this point and therefore we shall

utilize the parallel form of receiver.)

Since we have found the form of t(Xffi), the problem is solved

in the parallel form by inserting the £(Xjfi) computer, defined by

Eq. (2.18) and illustrated in Fig. 5, into the appropriate box in Fig. 3

(identifying @. of Fig. 3 with f. of Fig. 5). The result is the

system of Fig. 6.

E. LEARNING THE A PRIORI PROBABILITIES

In the model originally proposed it was assumed that the a priori

probabilities p(Hl) and p(H 2) were known but that some other parameter

was unknown. In many problems only the a priori probabilities are

unknown, and in other problems both the a priori probabilities and

other parameters are unknown.
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FIG. 5. A COMPUTER FOR Xf

COMPUTE

FIG. . A LARNIG RECIVER

SE6nO3 - 26ESEN



The solution to such problems cannot be obtained by treating p(H )

and p(H2 ) as signal parameters because they do not appear in the equa-

tions in the same manner, Since it is the purpose of this section to

outline the proper solution, we shall begin by assuming that p(H1 ) = Pi

and p(H2 ) = P2 are the only unknown parameters. If they were known,

the optimum system could be realized by computing I(Xk) and comparing

it to a threshold Lp2 /pI as previously noted. However, another optimum

system is one which computes (pl/p2(Xk) and compares it to L. By

utilizing this latter system we may show that when p(H1 ) and p(H2 )

are unknown but a sequence of learning observations 'A is available,

the optimum system computes the conditional expectation of (pl/P2)2(Xk),

defined in (2.22), and compares it to the threshold L [Ref. 141. The

conditional expectation is

L(X k'k-l) = PXk) 1 - p1 P(PlI\k-I) dpl (2.22)

where we have taken advantage of the fact that p 2 = 1 - p1. Now fol-

lowing the procedure which led to Eq. (2.12) we have by Bayes' law

p(p k) P(xkllpl k2) k2 (2.23)

fP(XklI PP?\ k-2 ) P(Pl k2 ) dPI1

Since p1  is the only unknown variable, we may write

P(Xk_lPld k- 2 ) = P(Xkl HI, k-2'Pl p(H IPll\k-2)

+ p(Xk- lH2 \-2'pI) p(H 2Pl,\k-2) (2.24)

But when we know that Xk 1 comes from the class of observations which

contain signal, we know the probability density function of Xk-1; hence

p(Xk-lIHl,Ak 2,Pl) = P(Xkl IH1) (2.25a)
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Similarly,

P(x k-lIH 2 ' '\ k-2 p2) = P(xk-2IH 2) (2.25b)

that is, the observations are conditionally independent of the past and

of the value of p 1  when either H1 or H2 is given. When the value

of p 1  is known, p(H 1 ) and p(H 2 ) are known, so that

p(H1 lp1  k2) = p1  (2.26a)

p( 1l?-)= 1 - PI (2.26b)

From Eqs. (2.24), (2.25a), and (2.25b) we may write p(p 1 \ ) in terms

of the likelihood ratios as follows:

P~pl ;\ k-) = PPll;\-2) (x kl)pl + (I -

f(' '(-, (li\C2 (x kl)pl + (I - '1))~ P(pl k-1) dp 1

(2.27)

Thus (2.22) may be rewritten in the form

P s k(s) 1 - 1  m lp + -l 1 ) P k-2 dp 1

L(XI k-lll/ -
(f X l)pl + p)I- 1)~l1, - dp1

(2. 28)

and a system nay be synthesized in the form of Fig. 7.

The solution when other parameters are also unknown is very similar

since in this case we have the basic equation:

L(X I; )l Udr de (.9
k '\k-1) =JJf tXkle 1 - p 1 p(Pl,&J 1 ) dpl1 de (29

SEL-65-011 - 28-



But p(8,P p 1, k-) may be written as

p(e, P1 \ 1 ) = P(elplf, k-1) P(PllK'k-l) (2.30)

and its computation performed by the systems of Fig. 3. Therefore by

writing

L(X kIll'\k-l) f fL(x ke) P(eIl,?f \k-l) dO (2.31)

(which is computed by the system of Fig. 3 with a suitable choice of ct),

Eq. (2.29) becomes

L(X k IL\kl) f fL(X k Ipi 1\ k-) I p1 P(Pll \k-) dpl (2.32)

which is functionally very similar to (2.22). Thus the system of Fig. 7

with i(x) replaced by L(X klpl'?\k-l is the required system.

VROVRALfdp AND THEOL

(SYNHRONZED)HOLD

(SYN9H-ONIZED)-I l



F. EXTENSION TO THE MULTIPLE-HYPOTHESIS DECISION PROBLEM

,In the multiple-hypothesis problem we are given M possible classes

into which we must categorize the vector X. There are (M-l) possible

errors associated with each of the M classes. The Bayes optimum solu-

tion depends upon the M 2 different weights which may be assigned to

each error; that is, a general solution requires the comparison of weighted

a posteriori probabilities

p(xIH i) i = 1,2,...,M

where

Hi = hypothesis that X is in class i

A general form of the optimum system is shown in Fig. 8. From this solu-

tion it can be seen that in multiple-hypothesis testing the conditional

probability p(XK.ii) pl.ys the same role as the likelihood ratio plays

in the binary detection problem. In order to obtain a learning solution

xc COMPUTE

X P(XIHI) I P

R

•0
00 000 -

0i

~PlxIHq

33378

FIG. 8. A MULTIPLE-HYPTHESIS MACHINE.
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we assume that each class is characterized by an unknown vector Ai,

and apply the same reasoning that was applied to the signal-detection

problem. (We assume that the A. are independent, that the X. are:1 1

conditionally independent, and that the p(Hi) are known.) That is,

P(X1 ,...,xkAi.Hi) = P(Xl1[Ai,Hi) P(X2 [A.,H i ) ... P(X kAi,Hi )k~~ i2 i.i

P(A1,... ,AM) = p(A 1 ) p(A 2 ) ... p(AM)

The solution is given by

P(Xkl i,k-l) = fP(Xk1HiAi)

M

H kl I,A i ) p(Hi ) + _" ?k\lHi, k-2 p(H.))
j l

M

p(XkllHj,\_) p(H.)

j=l

p P(Ail\k-2) dA. (2.33)

This equation shows the same recursive form shown by Eq. (2.12), and

leads to a similar system as depicted in Fig. 9. Since this system com-

putes only one of the required M conditional probabilities, there must

be (M-l) more systems that are identical except for initial probability

distribution p0 (Ai) and probability of occurrence p(Hi). These will

in general be different; but in the case where the p(Hi) are all the

same, the po(Ai) must be different, or all computer branches will

"learn" the same thing, and the system as a whole will learn nothing.

It is interesting to note that Eq. (2.33) verifies our intuitive

feeling that if we do not have some initial knowledge that the pat-terns

to be recognized are somehow different, we are not able to learn without

some external aid.
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./ ] (xkIHiXk-,1)

X k TO COMPARISON
p(XIAi Hi) OVERALL AND CIRCUITRYCO P i ( i) Ai  HOLD
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STORE STORE OTHER BRANCHES
II

33379

FIG. 9. A MULTiPLE-HYPOTHESIb NACHINE WHICH LEARNS WITHOUT A TEACHER.

G. SUNIARY OF CHAPTER II

In this chapter we have mathematically described a class of decision

problems in which the pertinent probability measures are known except for

some set of fixed parameters. We have developed a class, of systems which

will solve such problems when a sequence of "learning" observations is

available that contains information about the unknown parameter. This

class of systems may take the form of either the "sequential" or the

"parallel" canonical systems of Figs. 2 or 3. The resulting systems are

optimum at each decision instant in the sense that of all possible sys-

tems based on the same a priori information and utilizing the same set

of observations, these systems will provide the minimum average risk

decision. The systems are also fixed in size for arbitrary learning

sequences. The optimality and fixed size represent important advantages

over both conventional and prior learning systems.
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III. PERFORMANCE OF LEARNING SYSTEMS

It is the purpose of this chapter to investigate techniques for

determining bounds on the performance of the previously developed learning

system in specific cases, and to gain some insight into the way in which

this performance depends upon the number of samples in the "learning" set.

A. PERFORMANCE MEASURES

This chapter is concerned with two aspects of system performance.

Tia first is the average risk associated with a decision, the second is

the rate at which the system converges to the optimum system given

a priori knowledge of the parameter.

The average risk for Lihc hinary decision problem [Ref. 3] may be

defined as

p = pi + Lp2P1 1  (3.1)

where p1 = a priori probability of hypothesis 1 being true

P2 = 1 - p1 = a priori probability of hypothesis 2 being true

PI = probability of deciding that H2 is true when H 1 is

actually true

P = probability of deciding that H 1 is true when H 2 is

actually true

L = cost of a type II error relative to a type I error

It will be convenient to discuss performance in terms of the signal-

detection problem. In this case PI becomes the probability of a miss

PM and P becomes the probability of false alarm PFA (H = signal

present, H 2 = signal absent).

The rate of system convergence may be measured in terms of the

decrease of the difference between transient average risk and steady-

state average risk as a function of the number of observations (k).

This measure will be called the "risk error" and defined as
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p(d - p(d*()) (3.2)

where p(d*(0\k)) = average risk of the system in the transient state

after k learning observations

p(d*(9)) = average risk of the system given a priori knowledge

of a

B. A TECHNIQUE FOR BOUNDING THE PERFORMANCE

Although there are several possible approaches to the evaluation of

performance, only one will be presented. This approach is applicable to

the class of learning problems restricted to those which may be expressed

in terms of the detection of one of a finite set of signals embedded in

noise. If the noise is additive, white, and normally distributed and if

the signals are orthogonal, this approach results in some remarkably

simple results which are in good agreement with intuition. For more

general problems, the results are so dependent upon the particular prob-

lem that no useful or enlightening information has been uncovered.

Assume we have synthesized a system to detect the presence of a

signal of unknown waveform which must be drawn from a set of m signals

(sips 2 .... Sm) depending on a discrete set of parameters (61 ,0 2, ...,emI;

i.e., Si =S(ei). Let the signals be embedded in noise. Then the

optimum learning system will compute

m

2(X?\k) = P(e i\k) Z(XIe.) (3.3)

i=l

and compare it to a threshold 7 = Lp2 /p1 . Let

true value of e
d*(N .) = the Bayes decision rule based on

d*(,i) = the Bayes decision rule given knowledge of e
d'(\k) = any non-Bayes decision rule based on ?k

,(d) = average risk associated with decision rule d
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The average risk after k observations will be greater than the

risk given that the 0 were known:

The risk will be less than the risk of any other system based on ;k:

These properties follow from the Bayes nature of the decision rule. The

optimum system is sketched for convenience in Fig. 10.

' l P8.1k

33380

FIG. 10. AN OPTIMAL LEARNING SYSTEM.

To evaluate a bound, consider a suboptimum system which computes

P(e@Ihk)' and i.(XIei). Let this system determine the 0i for which

threshold 7 to make a decision.t If P(kk)" is greater than1/2

This suboptimum system is closely related to the "maximum-likelihood

receiver" of Helstrom [Ref. 22, p. 238] and to the "type III" receiver
of Wainstein and Zubakov [Ref. 23, p. 297]; however it is different in

that it takes the past into account.
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it will be largest, and the suboptimum system will have the same average

risk as the system based on knowledge of 0. If P( Jk) 0 1/2, it may

not be the largest, and an incorrect likelihood computer may be chosen.

If the wrong e. is chosen, the risk may be bounded as follows.

Define FW and P as
FA 0)M

F AA
P 0 FA Pr ( (XJ i ) > 71H 2,O) 6 i  6 (3.6a)

p(i) () = Pr (i(XIOi) < y1HI,03 (3.6b)

where PFA = Pr (U(Xj0)>'YH2 ,0) is the probability of false alarm when

e is known. Let

EFA(0) = max pFA)(6) - PFA (3.6c)

M() = max p) 1 + PFA (3.6d)
i=l, ...,Q Q

These two latter quantities are small in many interesting problems.

For example,. E FA(0) = 0 whenever the distribution of i(XIOi) con-

ditioned on H2 and 0 is independent of 0i, as is the case in the

detection of a set of signals in additive normal noise when the signals

are orthogonal after whitening (i.e., let K be the covariance matrix

of the noise), then the whitened signals are orthogonal if

S(Oi)tK-s( 1 ) = 5.jR, where 5ij = 1 if i = j, and 5ij = 0 if

i j. In this particular case we may write

i(x e exp - R + S(etKlX

But since we may replace X by

S(O) + N when HI  is true
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and by

N when H 2is true

then the orthogonality of S(e i) and S(O) allows us to write, for

both H 1and H 2

1 2'i

Thus the distribution of i(XieO will be the sane whether H1 or H2

is true, and c (6^) will be zero.

Next, we define two events, A kand B kas,

A k = event P(eIxk ) > P(O I?\ k) for all . 0^

B=event P'k 0 \i/k for some 0.P~~% R

The risk of the suboptimum system, when 0 is true, is bounded by

-f-()I) p(d*(E)I1^) P(Ak + P(Bk max fPWM (O) + LpPP()1)

(3.8)

Inserting the definition of e M(OG*), EFA(eG), and p (d*(O)I in this

expression gives

M k P2FA k k

+ P(Bk)(pl(I + E ) + Lp2 F C - (3.9)
k 1 M 2 FA FA

where

pM= Pr (L(Xje") < -YIH l' )
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is the miss probability when 6 is known, and the dependence of EM

and EFA on 6 has been suppressed.

For most problems we are interested in the region where PM and

PFA are small compared to 1, and P(Ak) is nearly one, so that by

combining (3.5) and (3.9) we obtain

p (d*k)) ~p(d *( E)!G) + p (Bk + pl1E M + Lp 2 EFA (3.10)

Thus we may identify the risk error E as

p PlP(Bk) + PlE M + Lp2EFA (3.11).

Because the system performance is dependent on 0 through P(Bk),

EM(G), etc., the application of this bound to any particular problem

is difficult; and as the performance becomes more and more dependent on

6, the bound becomes less useful because it is more and more difficult

to obtain an evaluation of P(B k). To obtain some insight into the nature

of this bound,, let us evaluate the bound for the problem of detection of

a signal embedded in additive white gaussian noise when the signal wave-

form is unknown. The signal may take on one of m orthogonal waveforms.

As noted previously, the normality of the noise and the orthogonality of

the signals insure that when the signal is not present the choice of

the proper 6. does not affect false-alarm probability; that is,
1

P = PFA for all 6i

so that CF(e) = 0. Similarly, the normality of the noise and orthog-sFA

onality of the signals insure that

P (@) = 1 - PFA)(e) for all 6 i +

NI FA -
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so that M (G) = 0. Thus we have

E = plP(Bk) (3.12)

In Appendix A we apply a Tchebysheff-type bound to show that plP(Bk)

(hence c ) is bounded as

4(1 + p P2 R)
pP(Bk ) /1 (3.13)

Pi kR - 4 Fm~ - 1 Rl+p Ip 2R)]

where

E(S(e i) t S( i)

R = 2 is a constant signal-to-noise ratio

n

m = number of orthogonal signals

P1 = probability of signal occurrence

P2 = 1 - p1 
= probability no signal will occur

k = number of observations in the learning sequence

For large k this bound is asymptotic to

4(1 + p 1 P2R)

pIkR

Thus the system performance converges to the performance of the system

which has a priori knowledge of the signal waveform at least as fast

as inversely with p1k, the average number of learning samples which

contain a signal in a sequence of length k.

C. EXAMPLE

The problem of detecting a signal of unknown frequency in white

gaussian noise, which was used as example 2 of Chapter II, is an example
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of a problem in which the system performance may be evaluated by the

preceding procedure. In this example, the set of possible signals is

a cos (wit + 0) 0 9 t T

S. (3.14)

0 elsewhere

where 4 = a uniformly distributed random variable

a = a Rayleigh-distributed random variable with parameter A 2

In this case all of the preceding conditions are met. We identify

A2

R - 2 (3.15)
2N W

0

where No/2 = noise spectral density

W = total band to be searched

and we can compute p(d*(S)IS) using standard procedures (Ref. 23,

p. 173ff] , and evaluate E using Eq. (3.13). Parts (a) and (b) of

Fig. 11 show the results for the case where there are 200 possible fre-

quencies within the band W. Also shown are the following:

1. The performance of the optimum system given a priori knowledge

of S for L = 1, and for P1 = 1/2 as a function of the signal-

to-noise ratio, R.

2. The performance curve of p(d*(S)IS) shifted by 3 db on the R

axis.

3. Bounds for the performance of the learning receiver for 1,000 and

10,000 samples.

4. The performance of a near-optimum, 200-channel receiver (wainstein

and Zubakov "type III" receiver [Ref. 23, p. 300ff]) which does

not learn.

It is clear that for case 3 above, the incremental risk introduced by

lack of knowledge of the signal frequency is very small after 10,000

learning observations, and that it is not much different--after 1,000
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observations--from the incremental risk introduced by doubling the noise

power when the frequency is known°. It is also clear that for almost any

task the nonlearning receiver would be virtually useless at the signal-

to-noise ratios shown.

D. OTHER TECHNIQUES TO OBTAIN PERFORMANCE BOUNDS

A second technique to obtain bounds on system performance may be

based on the use of Chernoff bounds for the tail probability of a sum

of random variables. This technique is applicable to Bayes optimum

systems which learn either with or without a teacher, since they may

both be described by

k = (XkI k-1) f2(Xie) P(e?\k-l) d8 (3.16)

This sequence of likelihoods (&; i = 1,2,...) is a martingale

sequence as shown in Appendix C. It may be centered at its expectation

by considering the "gain" at each new observation. Let yi = -

then

k

k =  Yi

i=l

Shannon [Ref. 27] has applied Chernoff's bounding technique to such

martingale sequences, and his work is almost directly applicable in this

case.

Bounds on the tail probabilities may be written as inequalities

involving bounds on the semi-invariant generating functions for the

martingale sequence. For example, we may let Vk (uH ) be the moment-

generating function for 'k conditioned on H. being true for X
kk

(H1 = hypothesis that signal is present; H2 = hypothesis that signal

is absent). That is,

k(u1H) = exp ( U ryi) dP (yiYil'.... 1 H (
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Now define bounding functions by the relations

7k (uIH f fexp (uyk ) dP (ykklk ... )Y9Hj (3.1.8b)

and

j Ii(u) = log 7i(u) (3.19a)

I (li )= log 7 k (uIH) (3.19b)

Suppose that we can find a single bound for all i ; k - 1, and call

this p. (u). Then we can show that, for some a, b > 0, real:

Pr k (k-l)k.±'(u) + it'(uIH )} e'p ((k-1)[Ii (u) -~'()

+ .L k(uIH)- up (uIH.) (3.20a)

for 0 5 u < b, and

Pr U - (k-l)j±'(u) + tk(u[IH ))~exp ((k-l)[Ik o(u) -u Lii(U)]

+ ILk (uIH)- u (ujw. (3.20b)

f or -a - u -O .

One technique for finding a suitable 4 0(u) is to find two cumulative

distribution functions 1 (Y) and 4'2(y) which bound Pyiy-1..Il

above and below for all y. V We then choose 4'(y) such that
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(1) 0(y ) = 01(y )  y

(2) 0 (y) = 2(y) y

(3.21)
(3) 0o (y) = y(c) = 42( ) c y

(4) f y do(y) = 0

Define

=(u) log feuy d4o(y) (3.22)

Then to(u) is a bound of the desired type. We can use this same

approach to bound k(UjHj) by conditioning 4)(YjHj) and 2(YjH

on H.. Unfortunately at this point the technique requires specification

of the particular problem in more detail; i.e., the distributions of

lim 0k and Lo must be specified. Although this is in general possible,

for the case of detection of an unknown signal in gaussian noise, both

distributions are log-normal and the moment-generating functions do not

exist for any u interval. This problem may be overcome by noting that

any practical system to compute k has a finite dynamic range, and by

truncating the distribution at this limit. Such truncation makes evalua-

tion of the bounds very difficult. Numerical solutions may of course be

found for any particular problem by means of a computer solution; however

the results can only be expressed numerically and will most likely shed

little light on the question of performance in general.

There are two other methods for determining system performance which

should be considered by anyone setting out to decide whether or not a

learning system is worth the cost in time, complexity, and money for any

particular problem. These methods involve either a direct evaluation of

the cumulative probability distribution of t(XI k) from the known

statistics of X and k or a determination of the statistics of

,(XINk) by simulation of the system and design of an experiment to deter-

mine the desired performance measures. Both of these approaches seem to
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be complex for reasonably large k; however in certain problems, particu-

larly where convergence is rapid, either approach may be useful.
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IV. LEARNING TIME-VARYING PARAMETERS

In the previous chapters a technique has been developed which will

allow the synthesis of systems which learn without a teacher when the

unknown parameter is fixed. This technique was accomplished by treating

the unknown parameter as a random variable. In this chapter the same

problem will be examined for the case where the unknown parameter is not

fixed, but varies with time. A synthesis technique for systems to solve

this problem will be developed by taking an approach similar to the

previous one and treating the unknown parameter as a random variable

which is time varying.

A. MODELS FOR THE TIME-VARYING PARAMETER PROBLEM

As in Chapter II the problem considered will be the binary decision

problem phrased in terps of detection of a signal which depends upon a

set of unknown parameters. The results may be generalized to obtain the

extension to multiple-hypothesis testing as in Chapter II.

The data to be used consist of an observation Xk and a learning

sequence (k- = XIX 2 f...'X k-1 . Each observation contains a signal

corrupted by noise, or it contains noise alone, and it is desired to

synthesize a system to decide whether or not the kth observation (Xk)

contains a signal. The Bayes-optimum system making optimal use of the

learning sequence is required. This problem differs from the problem of

Chapter II in this sense: the values of the unknown signal parameters

are not the same from observation to observation. This fact is indicated

by indexing the parameter set with a lowercase letter "c"; i.e., the

sigial parameters defining the signal present (if any) in the current

observation (Xk) are designated •

Formally, we let

H1 = hypothesis that Xk = S( c) D N

H'2 = hypothesis that Xk = N
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where S(c) is the current signal vector (unknown parameters) and N

is the noise vector.

For a particular problem the statistical nature of the noise and the

corrupting operation are assumed to be known so that the only unknowns

are the signal parameters. In order to solve the problem a statistical

model of the signal-parameter variations from observation to observation

is required. The statistical model must include a description of the

way in which the current values of the parameters depend upon past values,

and a description of the statistics of the times of occurrence of changes.t

The former description will be called "value dependence" and the latter

"time dependence."

The value dependence of the signal parameters may be described by
ththe probability density of the c realization of the signal condi-

tioned on all of the past realizations:

p(Ec le_ 1, ec 2,...,E 1 )

In some problems, particularly the frequency-hopping signal reconnaissance
th

problem to be described in example 2, the c realization will be

independent of the past, so that

p(Oc 6c1 ,c-2..., 11) = P(0C (4.1)

In other problems the dependence may be Markov so that

p(oc16clec-2 .... 1) = p(Oc l8 C) (4.2)

In yet other problems the entire past may enter; however, these problems

lead to systems which grow in size with k. For this reason the value

deperndence will be restricted to be at worst M th-order Markov.

tThroughout this chapter it is assumed that changes in parameter value
can take place only at a (countable) set of discrete instants in time.
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The time dependence cannot be described as generally as the value

dependence; however there are two types of time dependence which are of

particular interest because they occur frequently in physical problems.

The first type will be designated the "general random walk," since we

assume that a change takes place at the start of each observation. The

amount of change, as well as the direction, depends on the past history

and is described by p(c18cIl,Ec-29 .... ,Oc.M). An example of an unknown

time-varying parameter which may be approximated by this model is the

complex gain of a communication channel which is slowly varying with

respect to the duration of one signal (see example 1 of this chapter).

The second type of time dependence will be designated a "binomial"

dependence. In this model the changes in the parameter occur at moments

which coincide with the start of an observation, but changes do not

occur at each new observation. The probability that n changes will

occur in j trials is the binomial distribution,

Pnij) = (1)pj(l - p)n-j (4.3)

where p is the probability of a change in one trial. Once again the

value dependence is described by the conditional density p(cIc_ 01,8c-2'

...,c_M). An example of a parameter which has a "binomial" time depen-

dence is the frequency of a frequency-hopping signal as explained in

example 2 of this chapter.

B. SOLUTION TO THE PROBLEM

In order to obtain a solution to the learning problem, e is treatedc

as a random variable and the a posteriori distribution of 0 is
c

learned. As before, the Bayes system will compute the conditional likeli-

hood ratio

1(x klk-1) = ft(Xklec ) P(OcLk I ) dOc  (4.4)
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and compare it to the appropriate threshold. Since it is assumed that

i(xk10c) has known form, the problem again reduces to the computation

of p(e c k-1). In order to compute this function, a time-dependence

model must be given; hence the problem may be treated for two cases:

1. Case 1, General-Random-Walk Time Dependence

a. General Solution

In this case the index c will coincide with k since e

will change with each new observation; therefore,

ffIi]lp(eB 0.X 1 {k6 p 1if d6 kl -d0 1

P( i=l 
il

(kl? k-l) =p(;\k-l )

(4.5)

Thus if the value dependence is not at least as simple as M th-order

Markov [i.e., if p(OkIk-l,...,Bl) may not be written as p(0k18k-l,

.. k.M)], then the system to compute p(0kl\k-l) must grow in size

linearly with k. The complexity of the system would grow much more

rapidly. This is the reason for restriction of. the statistics describing

the value dependence of the parameter to be M th-order Markov with M

finite.

b. First-Order Markov Value Dependence--Vector Parameters

For simplicity in obtaining a system from this equation,

assume that the value dependence of the parameter is first-order Markov

so that

Pqk ;\k-1) f k I@k-i) Pk- I k-l ) dO k-

=f~e {kl)P(xk1ek_ 1)
Jp(e k P(Xk-lL6k_2) p(ek~l2k2) dekl (4.6)
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Equation (4.6) illustrates once again the recursive nature of the compu-

tations; that is, once p(ek-lIk_2 ), P(Xk-llek-1), and p(Xk-lLk-2 )

are computed (all of these quantities will be computed during the previous

observation-decision cycle), P(eklNk-l) can be computed.

Equation (4.6) may be rewritten in terms of likelihood ratios

as follows:

. ["(X k-18 k-l ) + a] (
p(ekNk-l) = fp(Okek-1 X - I(Xk 2) + pJ (ek lIk 2 ) d

6 k 1  (4.7)

where as before C = p(H )/p(H 2). After rewriting Eq. (4.4) as shown

below, thc required system may be conveniently synthesized.

2(XkI? \ = P kk (X k-l 1k_) +

kk-l JP ~x k 18k) f kek-l) IL X k-I~k-2 ) + C j
P( k-lINk-2) dek-l dek (4.8)

From (4.7) ard (4.8) the system shown in Fig. 12a may be

synthesized. This system operates in a manner similar to that described

in Chapter II. It performs three operations:

1. Compute r.(Xk!ek) for each possible 6

2. Compute p(kINk-l) ror each possible e

3. Weight (1) by (2), and sum over all e.

It is in the performance of the second operation that the time variation

of C is taken into account by including the three components [the

p(okltk-l) generator, the multiplier, and the integrator] in the prob-

ability loop. The t(X !4) computer must "sweep" through all values of

and the p(kI,.kl) generator must "sweep" through all combinations

of values of i k and k_ 1 . If there are only a finite number of values

of. -, the system may be realized in a parallel form by utilizing a set

of parallel computers {H X1._('i)) i = 1,2,.. .} where i indexes the

possible values of . In this case the two integrators are replaced by
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FIG. 12. LEARNING SYSTEM FOR GENERAL-RANDOM-WALK TIMlE DEPENDENCE.

summers with inputs from the parallel circuitry. A block diagram of

such a general parallel system is difficult to draw; however the parallel

form is used in the solution of example 2 later in this chapter.

c. First-Order Markov Value Dependence--Scalar Parameters

If the unknown parameter is scalar and has a random-walk type

of dependence on the past, the system of Fig. 12a simplifies somewhat.
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In this case, we may represent ek as a perturbation of ek-l; i.e.,

let

ek k-1 + k (4.9)

where Ak  is independent of 0k. . Let the distribution of sk be

pA(z). Then a simple transformation will provide Eq. (4.10).

P(eklek-l) = PA(ek - ekil) (4.10)

Equations (4.7) and (4.8) may be rewritten as

P~e p(0k0 ) i hk2( X k - l 1' k - l ) + 0'

P(kINkl1) = fPAek - .1)+

* p( k-l k-2) dOk-1  (4.11)

(xklk-l) = f (xk10k) fPA(k - ek l1 [(xkl8kl )  + c l

* p(e kl\ k-2) dek- 1 dOk  (4.12)

When 0 is a scalar, the system can be realized by sweeping through the

range of 0 in some interval c (which must be less than half the obser-

vation interval T/2 for real-time operation). In this case ak and

@k_ are two different time variables, and Eq. (4.11) represents a con-

volution. For this reason, the system may be realized as shown in Fig.

12b, where the only difference from the system with fixed parameter is

the filter with impulse response PA(t) in the probability loop. In*

order to insure that this filter may be realized, the delay of T in

the forward loop has been added. This concept of the filter p A(t) will

be useful in the solution of the second example.
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If the parameter value dependence is first-order Markov, but

not representable as an independent perturbation, then p(eklek-l) will

not lead to a time-invariant filter as above. Instead it will lead to

a time-varying filter as a replacement for the filter with impulse

response pA(t) in Fig. 12b. The replacement will have a time-varying

impulse response

h(t,y) = p(ek = tke I = Y) (4.13)

The output of this filter at time t, for an input z(t), is defined by

eo(t) E h(ty) z(y) dX (4.14)

Methods for the realization of such filters are beyond the scope of this

study; however one method for a particular form of h(t,y) is suggested

in example 1. For other methods see Refs. 25, 26.

d. M th-Order Markov Value Dependence--Vector Parameters

If the unknown parameter is M th-order Markov, the same

general approach to system synthesis may be taken. Equation (4.5)

becomes

M [p(X kil .9i)  .

p(ekfOk_ .... ,k_M) dek_ 1  ... dOk M  (4.15)

The change which this requires in the block diagram is simple

enough; however, the complexity of the system, even for scalar 0,

rapidly becomes intolerable. To see that this is true, assume that 0

is scalar and M = 2, Then somewhere within the system, the function

P(OkI&k-l, k-2) must be stored for all possible combinations of 0k?
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ek-l' and k-2' If there are, say, N possible values which e may
take on, the storage required is N . In general, the storage increases

as NM.

2. Case 2, Binomial Time Dependence

a. General

In the case of binomial time dependence the integral-valued

variable j is defined as follows:

j = number of observations since the last change in e

Then since the changes occur at moments which are binomially distributed,

j will be exponentially distributed as follows:

P(j) = p(l-p)j -I (4.16)

where p is the probability of a change in 0.

In order to obtain a recursive relation from which a system

may be synthesized, the distribution of e is conditioned on j as

well as on the last value of 0; i.e.,

p(eI\kk1 ) = P(j) P(clj,Xk-l) (4.17)

But

P(O HJ , _) k-i k j ) P( kj) (4.18a)
c k-i _P kN(4.lja)

or
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k-i

pe'? c k-1 k-j -
k- (XI I 1)Pkjl)

k-j

k-i -~i~~ 1

=k-j L-IIIJpekli

k-i (xiIe +

R i~j xTiIYV P(E cI \ kjlp) (4.18b)

Also,

P(a cI\k-J 1 0i) f fP(E) C- lXk-jij) P(ec- 1I\.1~_,) dG,_ (4.19)

Hence (4.17) may be rewritten as

p(O 1A~ P(j) k- LPi~a~ le -'-jlj
j k-j

p(e C 1 1 j_,) de 1 ~ (4.20)

Note that p(e 1IXk-j1 lp) is the value of p(clk-1)
calculated j observations ago, so that Eq. (4.20) is in some sense

recursive. This fact will be exploited in the following paragraphs.
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b. First-Order Markov Value Dependence--Vector Parameters

In order to interpret Eq. (4.20) as a system block diagram,

the problem is simplified by assuming that the value dependence of e
is first-order Markov. In this case

p( c? k-j-lyj) = fp(ec1 ) p(Gc ?.l. j-,j) dec. 1  (4.21)

Call this Pk-j-1l In order to rewrite Eq. (4.20), denote

, (X~ie i) + c

L = i (4.22)

Then Eq. (4.20) may be expanded and written as

p(e k7).I) = P(1) L kiPk_2

+ 2)Pk-3 [1 + gk k_3 (+P~l -2 k-2PPk-3 k3(

(4.23)

This function is recursive in the sense that once Lk_ 1 and

Pk-2 are available, Lk  and Pk may be computed from Xk  and Xk.I .

A system to realize this computation in delay-feedback form is shown in

Fig. 13.

c. Independent Values--Vector Parameters

When the value of e is independent of the past values ofC

e (which will occur, for example, in the frequency-hopping problem),
Eq. (4.23) simplifies and the resulting system is more manageable. In

this case,

p(,C cl ) : po() (4.24)
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hence

P(eL ~~ p (a) P() Lk. + L 2  1 l Lk.. (i + .

(4.25)

A computer for this equation may be realized as in Fig. 14.

q = - p P()/P(1)

SSTORE

n

FIG 14 PROBABILITY OFR ALCANE N

CASE 13. 33368IY OPUE, AE b
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d. Independent Values--Scalar Parameters

When the unknown parameter is scalar (such as in the frequency-

hopping problem), the system to compute £(Xklk-l) may be realized in

the sweeping form shown in Fig. 15.

. [SAMPLE!
.. (X- f() dO - AND - t(XkIXk-1)

' L I IHOLD|

VARY OVER P
ALL 8 IN {--

33367

FIG. 15. LEARNING SYSTEM, CASE 2c.

C. EXAMPLES

In order to demonstrate the utility of this synthesis technique when

applied to problems in which the unknown parameter is time varying, con-

sider the solution to the problems described briefly below.

1. The Fading-Channel Problem

In order to obtain a system which will be simple enough to illus-

trate the application of the foregoing technique, and at the same time

realistic enough to demonstrate the utility of this technique, we shall

utilize the following mathematical model of a data link using on-off

keying for binary-coded transmission of data through a fading 
channel.

t

Figure 16 illustrates the channel.

The channel model used is, according to Turin [Ref. 281, representative

of propagation through the ionosphere above the MUF, or through the

troposphere.
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SIGNAL INPUT FADING I Y(') CEIVED SIGNAL
s(t) CHANNEL + x(t)

ADDITIVE NOISE
n (t)

33366
FIG, 16. THE FADING-CHANNEL MODEL.

a. On-Off Keyed (OOK) Signals

(I) Signal. The information is transmitted as a sequence

of marks and spaces. The signal is on for a duration T when a mark

is being transmitted, and off for a duration T when a space is be 4 %g

transmitted. When the signal is on, it has the form

;(t) = Re (s(t) exp (jwt))

where wt is known; s(t) is a known, real, lowpass modulation wave-0

form of duration T; and Re denotes "real part of."

(2) Channel. The "nonselective, slow-fading" channel model

used by Turin [Ref. 28]t will be assumed. This channel is represented

best by its operation on the signal. The channel output y(t) may be

represented as

y(t) = ','e (gs(t - -v) exp [j(W t - 0)

(Thus by ignoring the modulation delay T, we may think of the channel

as a multiplicative medium with constant G = ge je). The medium is

characterized by the three quantities: g, the attenuation; T, the

modulation delay; and 4,, the carrier phase shift. We assume that T

is known to the receiver, g is Rayleigh distributed and 4 is uniformly

distributed over the interval 0 to 2%. The channel is assumed to vary

t
Turin discusses this model and the physical justification in considerable
detail and therefore no attempt is made here to repeat his discussion.
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slowly so that g and 4 may be treated as constants over at least one

signal duration T. More detailed time-variation assumptions will be

made later as they are required.

The additive noise is assumed to be gaussian with con-

stant spectral density N /2 over the narrow band of interest. Since

n(t) is a narrowband gaussian random process (NBGRP)t it may be written

in terms of a complex modulation process as

n(t) = Re (1 (t) exp (jm ot))

where 1(t) is a lowpass, complex, gaussian random process (GRP).

(3) Problem Formulation. The problem is to process the

received waveform in a manner which will result in a minimum average

risk decision. Because g is Rayleigh and 0 is uniform, the quantity

gs(t)e - j  is a lowpass complex GRP, and the quantity gs(t)e -j + rI(t)

must be a lowpass GRP. We may note that x(t) under either hypothesis

may be written as the cissoid exp (ju0 t) modulated by a complex, low-

pass GRP; hence x(t) is an NBGRP.

If we utilize the complex notation

x(t) = ' e ( (t) exp (jw 0t))

we may reformulate the hypothesis in terms of 0(t) as follows:

H 1 - (t) = gs(t)e j + r(t)

H2 - (t) = -(t)

A comprehensive discussion of the properties of narrowband gaussian
random processes may be found in Refs. 25 and 26.
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(We note, parenthetically, that we may obtain (t) to a very good

approximation from x(t) utilizing the following equations:

2jt

Re ( (t)) 2 f x(t) cos cDt dt [=(t)]

t-

am 2(t)- x(t) sin EDt dt [= x(t)]
t-a0

where a is short compared to time variations in s(t) and long compared

to variations in cos w t. We denote these two real quantities by x(t)

and x(t) respectively.)

It is shown in Ref. 26 that the real and imaginary parts

of the lowpass complex envelope of an NBGRP are independent if they have

symmetric spectral distribution; hence x(t) and (t) are independent

GRP's ii we assume that the spectrum of the fading medium meets these

requirements.

For brevity we denote by (-) the real part and by ()

the imaginary part. We note that (t) may be considered to be zero for

on-off keyed signals, and denote

- = 1 e ge- j

g = m ge-j¢

We may identify g and g as the in-phase and the quadrature channel

gains. Then when H1  is true,

'(t) (t) + 1(t)

X(t) = S,(t) + -i(t)

thWe represent the k observation of x(t) and (t)

as the column vectors Xk and Xk which have as their rows the 2TW
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samples of x(t) and x(t), [(k-l)T ; t < kT], sampled at the rate

2W samples per second [W is the bandwidth of the envelope s(t)].

Then 'the likelihood ratio, conditioned on gk and g k may be written

as in Eq. (4.26) (gk and gk are the values of the unknown parameters

V g the th
g and j during the k observation).

i(xkIgk'gk) = -(Xk'kgk'gk) pk ) (4.26)

But Xk  and Xk  are independent vhen H2  is true, gk and gk are

independent, Xk does not depend on g and Xk does not depend on

gk; therefore we have

P(Xk(gkHl) P( klk 
Hl

)

kk = p(klkH2 ) P(Xk ItH 2)

= g(kk L(Xkgk (4.27)

where, due to the normality of the noise,

r '.2
:Xkgk =exp -IV St S + SX

klk =ep 2N.W t N 0WStk)
o -2
gk gk

klgk ) =exp NJ S tS + NW S tXk

x k(O) xk(O) S(O)

xk(2W) xk(21V)2

x k = k S ,

k - 6 2 W
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The fact that the likelihood ratio factors into a part depending on gk

and a part depending on gk will be useful in the synthesis of the sys-

tem since it will allow synthesis of two independent systems, one to

learn gk and one to learn gk'

The optimum system computes

i(xkI"l) ffp( k, kKl) 2( klgk) dg d (4.28)

thus we require p(gkgk ?k -l) in order to synthesize the system. It
v idpnet

may be shown that gk and k are conditionally independent:

p(k kPk1 k l) = p(gkl\1k.) P('kkk_1 ) (4.29)

where k I  (xIx,2,...,xk.I)

k-1 (Xl'2'"'Xk-l

Hence the system may be synthesized in the form shown in Fig. 17.

tThe left-hand element of Eq. (4.29) can be written as

P kIk-1_) = P(gklgk,\kl) P(gkl? _l )

Since knowing the value of ?\kl is the same as knowing the value of

k- nd k-l' we may replace p(k by gkg

Alternatively,

.. . P(gk, k-llgkP xk-1 )

PAgklgkv kk1l, k-1) =

P(k-li x k-1)

Since both gk and Ak-l are independent of gk and k-11 then

Agklgk, k-1) = p(gkl k-1) and P(kIk-1) = p k-kl)
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To determine the block diagram form of the box which

computes p(gk'k-l), a model of the time variations of g and

is required. Two possibilities will be considered.

Case 1: The first and simpler of the two models

involves the assumption that the fading process is a random-walk process;

that is, assume that changes in g and g take place slowly enough so

that each new value of either g or g is a small independent pertur-

bation of the preceding value, so that

gk = kl + E k
(4.30)

gk = gk-1 +

where Ek is independent of gk- ; Ek is independent of gk-l; and

both are distributed according to p-(z) = pz(z).

In this case, the box to compute p(gk~ ~l) or

p(gkl k-l) may be realized as shown in Fig. 18a.

Case 2: The second model is more involved, and allows

the correlation between present and past values of g and g to be

taken into account by treating the processes as M th-order Markov vari-

ables. To be specific, assume that the correlation of g or

decreases exponentially with time back MT sec, and then becomes zero.

In this case

_1 [-2

p' 9= 1 exp flLg2 2- q +
kk-1kl...,gk-M) 2 k gkgk-l

v M

+ + ... + 2gkgkMqM]3 (4.31)
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so that [see Eq. (4.15)]

Mf.*. E IT - d ddv
P~kl'k-i) . ... P(gklgk-l'"''gk-M) Pk-il'k-i) gk-I "'dk-M

i=l

-2\ M 'i
i-g' N. .. ..

- exp Jp(k±Ik-i) exp 2 kgk i) dgk-i

i=l (4.32)

The system shown in Fig. l8b will compute this function. In this case

it is necessary to utilize M time-varying, linear filters h, ...,hM '

These filters have an impulse response

hi(t,gk) = exp ( t) (4.33)

Such time-varying filters can be realized with a tapped delay line of

delay length 2c (where T is the time required to sweep through the

range of g). If the range of g is quantized into Q levels, the

filter will require 2Q taps, as shown in Fig. 19.

INPUT TAPPED DELAY LINE

W, t 0 W20

w = exp [-(nqi/3 2)]
n

n= 1,2,...,2Q

V 8 TNCREIENTAL DELAY = T/Q
33382

FIG. 19. TAPPED-DELAY-LINE REALIZATION OF TIM-VARYING LINEAR FILTER.
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b. Frequency-Shift Keyed (FSK) Signals

A somewhat more complicated, and perhaps more useful, example

results when the signal model is modified so that the modulation is

frequency-shift keying instead of on-off keying. Such a signal model is

described below,

(1) Signal. The signal is on continuously; however it is

shifted between two frequencies depending upon whether a mark or a space

is being transmitted. This shift occurs at multiples of T. During

transmission of a mark signal, s1 (t) is transmitted; and during a

space, s2 (t) is transmitted, where:

S' lL) = Re (S exp (jwIt)) 0 t T

s2 (t) = 'Re (S exp (jw 2 t)) 0 t T

We assume that w 1 and w2 are chosen so that the signals are orthogonal

over the interval T; i.e.,

fT s1 (t) s2 (t) dt = 0 (4.34)

(2) Channel. We make the same assumptions concerning the

channel as for the on-off keyed signal. In this case, however, there

are two channels of interest, one at w1 and the other at w 2 " We

assume that the two channels fade independently and that the multipli-

cative constants G1 = g1 exp (-j&'l) and G= g2 exp (-j0 2 ) are

independent, complex gaussian random processes with symmetric spectral

distributions.

(3) Problem Formulation. In this case there are two

hypotheses:

H = hypothesis that x(t) = Glsl(t) + n(t)

H 2 = hypothesis that x(t) = G2 s2(t) + n(t)
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By writing x(t) in the complex modulation form at

the two frequencies and taking advantage of (1) the narrowband nature of

the processes and (2) the independence of the channels, it is readily

shown that the likelihood ratio factors. Similarly, the joint condi-

tional probability density p(9 factors, so

that

i(X~~ kl -) (l,k1_l,k-l) '(Rl,k 1%,k1 jP(V2 ,kI\ 2 ,k-l) '(' 2,k 2 ,k-1~

(4. 35)

where

X .(O) iO

X x1

L- T A ~i(T - A

x i(t) = Jtt- a x(t) cos wt dt

x i(t) = ftt x(t) sin wit dt

i,k i,l' i ,21' i,k)

and where i=l1, 2.
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Thus the solution to the independent fading-channel

problem when FSK modulation is used is the ratio of the output of two

of the previous systems. (See Fig. 20.)

E
P p(
A

R M"1kkk-l)~-

33371

FIG. 20. LEARNING RECEIVER FOR FADING FREQUENCY-SHIFT KEYED SIGNALS.

2. Frequency-Hopping Signal Reconnaissance Problem

There are many reconnaissance problems in which it is desired to

detect the presence of a signal with unknown or randomly time-varying

parameters. Such problems are often readily solved by the procedures

outlined above. One such problem involves the detection of a frequency-

hopping signal embedded in noise. The model for this example follows.

a. Signal

The signal is assumed to be a narrowband signal which may be

represented over an interval of duration T by a sample function of a

narrowband gaussian random process with center frequency which is an

unknown, time-varying parameter. Hence
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s(t) = a cos (wt + o)

where a is Rayleigh distributed, p(a) = (a/A2) exp (-a2/2A2 ), and

0 is uniformly distributed over the interval from 0 to 2-A. The fre-

quency is assumed to change only at integral multiples of the interval

T. The probability of a change in frequency is p << 1 independently

of when the last change occurred, and the frequency is equally likely to

change to any value within a specified band W.

b. Noise

The noise is normally distributed, with constant spectral

density No/2 over the band W.

c. Problem Formulation

The problem is to examine intervals (of duration T) of the

received waveform and to make a signal-presence decision at the end of

each interval; hence signal-present and signal-absent hypotheses are

defined as in example 1. Because the unknown variable is a scalar with

zero-order Markov value dependence and binomial time dependence, the

system for detection must take the form of the system of Fig. 15, with

e replaced by f. To complete the solution, an expression for i(Xif)

is required. This expression is (see Chapter II)

k,(Xlf) 2 2 exp A22 IXtE(f) 12 (4.36)

2N--- +  2N W

where

x(O) 1

x(A) exp (j2itfL)

x = ,E(f) =

x(T -A exp [j21tf(T - A)

x(t) = received signal, A = - sampling .interval
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The quantity "XtE(f)12 is proportional to the periodogram of the input

at frequency f, which in turn is closely related to the spectral density

of x(t) at f. From these facts it may be shown that the likelihood

computer (which must sweep over the range of f) consists of a time-

compressive sweeping spectrum analyzer followed by an antilog device

and an amplifier, as shown in Fig. 21. Here the sweeping analyzer must

cover the band W in the time T, and repeat periodically.

TIME-COMPRESSIVE ANTILOG AMPLIFIER
- SWEEPING ANALYZER DEVICE A .(Xklf)

W(AND:W) EXP(.) G= 2 RI

33372
FIG. 21. LIKELIHOOD COMPUTER.

A receiver of this nature will optimally detect frequency-

hopping signals for which the model proposed is a suitable representation.

Although it is more complicated than many receivers, such an adaptive

receiver should not be particularly difficult to construct.

D. SUMMARY OF CHAPTER IV

In this chapter we have investigated the learning problem in which

the unknown parameter is time varying. By utilizing two specific models

for the way in which the parameter may vary in time, we have demonstrated

that the same techniques which are applicable to the solution of learning

problems when the parameter is fixed are applicable when the parameter

varies in time. Furthermore, through the use of two examples, we have

demonstrated that the models proposed are applicable in a variety of

physical situations.

tFor a general discussion of the periodogram see Ref. 25; for a discussion
of a time-compressive spectrum analyzer see Ref. 29; and for the rela-

tionship between spectral analysis and the periodogram see Ref. 30.
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V. SYSTEM REALIZABILITY

The purpose of this chapter is to investigate the physical real-

izability of the optimum learning systems developed in the previous

chapters. The realizability of a system will be defined in terms of the

number of elements required to construct the system rather than in terms

of the realizability of the individual elements. A system which requires

a finite number of perfect elements such as amplifiers, multipliers,

adders, storage elements, etc., will be considered to be realizable.

It is important to recall that very few, if any, mathematical models

are exact representations of a physical problem, although the models may

be accurate enough that the difference between physical and theoretically

predicted events cannot be measured. Such models are considered to be

adequate representations in an "engineering" sense. It is in this

engineering sense that the individual elements of the learning systems

are physically rea]izable, and it is in this sense that we shall demon-

strate the realizablity of many learning systems.

A. SYSTEM MEMORY CAPACITY

Learning systems extract and store information from a sequence of

observations. They are useful if the information storage required is

less than the storage required to store the observation sequence. In

the systems developed in Chapters II and IV the system size (number of

elements) depends directly on the number of information-storage elements

required. From the mathematical description of the systems, it is clear

that the information stored is used to compute p(el?\k); thus to investi-

gate system size we investigate the memory capacity M required to com-

pute p(ehk). We define the required M of an optimal learning

machine as the minimum number of functions 0i(k) of the observation

sequence Nk which must be stored by the learning machine.

In order to investigate the theoretical information-storage capacity

required, we shall examine the concept of necessary and sufficient

(minimal sufficient) statistics, and the dimensionality of the linear

space spanned by these statistics. We shall utilize the definitions of
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Dynkin [Ref. 311 and Grettenberg [Ref. 32] to prove the following state-

ments:

1. The system which computes p(e1\k) computes a minimal sufficient
statistic.

2. No optimal learning system may be constructed with a memory capacity
less than the memory capacity required to compute p(ak\ k).

3. If the set 0 of all possible values of the unknown parameter 0
consists of Q points e1 , 02, -... GQ, the memory capacity of
an optimal learning machine is less than or equal to Q-1.

We shall show in Sec. C that in many learning problems a discrete

model for 0 exists which is adequate in an engineering sense.

B. MINIMAL SUFFICIENT STATISTICS

Systems to solve the classificatit.n problem when an important param-

eter is unknown must extract and store certain information from a sequence

of observations. The information to be stored i.s that which will allow

the selection of the conditional probability distribution p(XI) (from

which the observation X was drawn) from a family of distributions

indexed by 0. Systems which perform this selection are computing func-

tions of the learning observations which partition the observation space

into a set of decision regions. It is well known that certain functions

of the learning sequence lead to Bayes decision regions regardless of

the loss functions and a priori probabilities [Ref. 33]. Such func-

tions are sufficient to make a minimum average risk decision, hence they

are called sufficient statistics,

Some sufficient statistics are more desirable to compute than others

because they require the storage of less information. Since the learning

problem under study requires a sufficient statistic, it is desirable to

choose that one which requires the least information storage. A function

within this class is called by Dynkin [Ref. 311 a necessary and sufficient

statistic; however a more descriptive name, which has been used by

Grettenberg [Ref. 32], is a "minimal sufficient statistic."
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A sufficient statistic, in the above sense, may be defined
t as

follows.

Definition: A statistic T(X) is sufficient for the family

(p(XIe) : e s D) if and only if p(XI) may be factored as follows

p(xIe) = h(X) f(T(X),e) (5.1)

where h(X) depends only on X and f(T,e) depends on X only

through T.

In order to study minimal sufficient statistics, we first define

these functions in terms of functional dependence as below.

Definition: A sufficient statistic T1 (X) is dependent on another

sufficient statistic T2(X) if T2 (x ) = T2(X2) implies Tl (x) 

TI(X2), that is, if T1(X) may be written as a function which

depends on X only through T2 (X).

Definition: A minimal sufficient statistic T(X) is a sufficient

statistic which depends on all other sufficient statistics.

From these definitions it is clear that the function p(O[?k ) is a

minimal sufficient statistic for the family (p(Xje) : 0 E D), and a

sample of size k. That is, it is sufficient because p(X1 ,...,x klq)

may be factored as

p(xl,...,xk e) = ko~-) p(Xlp...,xk) (5.2)

0

and it is minimal since it depends on every other sufficient statistic.

To show this, let T(X1 ,...,X k ) be a sufficient statistic, then

p(Xl,...,xkf@) = h(Xl....,xk) f(T(Xl,...Xk),q) (5.3)

tThe concept of sufficient statistics is only interesting when we observe
more than one sample. We may define minimal sufficient statistics for

the sample of size n by replacing T(X) by T(XIx 2,.,x n) in each

of the definitions given.
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so that

P(elXl,...xk) = P(xl,...,xk~e) p0 (O)

h(Xl , .... X k ) f (T(Xl,... ,Xk)," ) Po(e)
h(X1 .... PXk ) f f(T(x1 .... k), e) PO(e) dG

(5.4)

Hence p(e;k) depends on (Xl,...,Xk) only through T(X 1 ... ,Xk).

Thus the optimal learning system computes a minimal sufficient

statistic, and the first statement of Sec. A has been demonstrated. To

demQnstrate the second statement we proceed as follows.

An optimal learning machine for the observation sequence \k  and

the family (p(Xfe) : E 0) must compute a sufficient statistic of

Nk ' A minimal sufficient statistic of Nk  is a many-one transformation

on all other sufficient statistics (except other minimal sufficient

statistics) because it is functionally dependent on all other sufficient

statistics. Thus the number of functionally independent functions of Nk

which must be computed to compute a minimal sufficient statistic must be

minimal. No optimal learning machine can be constructed with a memory

capacity less than that of a machine which computes a minimal sufficient

statistic.

Finally, we shall demonstrate that the memory capacity M of ac

machine to compute p(O i\k) is finite whenever the set (D of all pos-

sible values of e consists of Q points e1,02,.. .,eQ, and that

Nc : Q-1. The function p(eI\k) may be written

Q
p(Olk I i(G) gi P\ (5.5)

k ik
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where

i ( 1 0i = 0 i

elsewhere

g1) k9 = P(e!k)

But

k
P(O i k) = H p(X j 1 i) Po0( E)

j=l

= expl= £n p(xiiei} Po(G) (5.6)

Thus it is su'ficient to store the Q functions

k

in p(X jeo).1i
j=l

in order to be able to compute polIk) and M c Q-l.

If we have the case where the functions p(XIei) are functionally

independent, then it is necessary to store the Q functions, and the

inequality (M c Q-l) becomes an equality (Mc = Q-1).

It is clear that once we are given a decision problem involving

(p(Xle) :e ) D), we may readily construct a finite-sized system so

long as 0 is a set of Q points. In fact, by taking advantage of

any functional dependence which may exist between the functions p(Xf9i),

we may always construct a system which requires a minimum of information

storage capacity.

- 77 - SEL-65-011



The problems in which 0 does not consist of a discrete set of

points may often lead to systems in which M is not finite. Thus thec

systems will not be realizable.

C. PRACTICAL CONSIDERATIONS

We have just noted that the memory size of the learning system is

finite so long as the unknown parameter space is discrete, and that in

many cases of interest it is infinite when the parameter space is not

discrete. Since it is not usually considered possible to construct sys-

tems with infinite memory capacity, we may draw the conclusion that we

cannot construct the theoretically optimum system in these cases and can

then set about either changing the theoretical model, or looking for a

suboptimum finite system.

One reasonable way in which to modify the model is to ask for the

optimum (Bayes) system under a finite memory constraint. Such an

approach, although logical, is difficult to apply to the learning prob-

lem and will not be attempted in this study.

Instead of attempting to modify the model we may find it more useful

to examine the results of simply using the model to synthesize optimum

systems, and then to approximate these systems as well as we can. Although

this approach is much less pleasing mathematically, it has the advantage

of being practical, and has some precedent in other applied decision-

theory fields.

A similar situation exists whenever we represent a continuous func-

tion x(t) in the interval (0,T) by its sample values x(0),x(t 0P... ,

X(tm) taken in this interval. In an engineering sense for some large

m these samples adequately specify x(t) : t F (0,T); however, strictly

speaking, unless m - - this is only an approximation [see Ref. 20].

The fact that in most cases there is some finite set of discrete

values of the unknown parameter which in an engineering sense represent

all of the usefully distinguishable values that, the parameter may assume

is stated in the following theorem. A system based on this set of pos-

sible parameter values requires a finite (fixed) memory capacity.
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Theorem 1. Designate by 0 the space of all possible values of

the vector parameter 0, and let the range of each coordinate of

e be bounded. Then if p(Xle,H 2 ) is independent of 0, and

p(XIe,H1 ) is a continuous function of e for all e 6 0 and all

X, there exists a subset of 0, say 0Q = e1, e2 . 6Q), with

a finite number, Q, of discrete values of e such that for any

E > 0 and all 0 e 0 there is a 0 e T Q which satisfies

pd*O e):5 p(^O I ̂  +E

where p(d*(aq)Ie)0 ) is the average risk of the Bayes decision rule

based on the assumption that 0q is true (d*(Oq)) when 0 is

true.

This theorem is proven in Appendix B. The condition that p(XIe,H )

be a continuous function of 8 is not particularly restrictive and could

be removed by first extracting the set of a at which any discontinuities

exist, provided this set is finite. The condition that p(XJO,H 2) be

independent of 0 has been introduced primarily to simplify the proof

of the theorem. In most applications this condition will be met. If it

is not, it can be replaced by the requirement that p(Xj0,H 2 ) be a con-

tinuous function of 0. These conditions are all usually met in appli-

cations so that a finite set 0Q will almost always exist in practice.

This theorem demonstrates that in many binary decision problems we

may quantize the space of the unknown parameter in such a way that if a

learning system is constructed on the basis of this quantization, and if

the learning system converges so that it utilizes d*( q), the ultimate

system performance will be arbitrarily close to the ultimate system per-

formance of a system based on the unquantized space. In Chapter VI we

shall demonstrate that in most binary decision problems the "quantized"

system will converge to d*(0q) such that

(d*(@ = minp(*eh ^
- Q
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In order to illustrate the choice of quantization coarseness, consider

the following example.

Example: Suppose that we wish to detdct an unknown signal in gaussian

noise. Let S = signal vector

K = noise covariance matrix

S = unknown parameter

Then we know [see Ref. 3 or 231 that the quality of performance of a

system which is given a priori knowledge of S is dependent on the

"divergence" defined by

d2  A -i1^
d= S tK S

The quality of performance of any other linear system using a slightly

mismatched filter can be measured by the ratio of divergences.

The difference in performance of two systems is a continuous monotonic

function of this ratio, and is zero when the ratio is 1. If we require

that

2

where E is a small quantity, the performance difference will be small.

Thus if we have a system in which the S-space is quantized so that the

nearest point to S is, say, S* = S + A, then [Ref. 3, p. 45]

(d,)2 
S ( Kt -I(S Kl )

(A _2 (AA2

St K + 2( tK -S)(StK 1A)+ (5.8)

SEL I+ 2tKA + A K
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Relations (5.7) and (5.8) require that

~Kl')(S*Kl'S*) - (SK-IS*) < E(S'tK-ls)(S*K-lS*) (5.9a)

This relation may be simplified, if (SKlS )(StKlS*) is greater than

one, to yield

S ("K-lA) < ~'(5.9b)

We may use any quantization interval in S-space which satisfies (5.9a)

or (5.9b) as appropriate. The resulting system will be capable of per-

forming nearly as well in the steady state as a system with a priori

knowledge of S.

D. SUMMARY OF CHAPTER V

In this chapter we have discussed the question of system realizability

in terms of the number of information storage elements required of an

optimal learning system. We have been able to prove two important facts

about learning problems.

1. Learning systems to solve problems in which the unknown parameter
may take on only a finite number of values are always finite in
size.

2. Most learning problems in which the unknown parameter may take on

an infinite number of values may be adequately represented by
problems in which the number of values is finite.

In the second statement an adequate representation is one which leads to

a system which will perform almost as well as the system based on the

infinite model. The second statement depends upon the fact that the

system based on the finite model will converge even though the infinite

model is the best representation of the physical problem.

In the second statement the existence of an adequate representation

means that for every possible value of the unknown parameter in the

infinite set there is a value in a finite set which is arbitrarily "close"
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when "distance" is measured in terms of the difference in performance of

the corresponding systems. This latter statement will become particularly

meaningful in the next chapter when we show that learning systems based on

the finite-set representation will converge to the finite system which is

"closest" in a performance sense to the optimum system based on the

infinite set.
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VI. SOME PROPERTIES OF LEARNING SYSTEMS

Systems which have been synthesized as proposed in Chapters II and

IV have several interesting properties. Such systems are stable, and

they converge to the system which would be optimum if the unknown param-

eter were known. Furthermore, systems which are constructed as suggested

in Chapter V, by quantization of the unknown parameter, also converge to

the discrete point in the quantized space which is nearest the convergence

point of the equivalent nonquantized system. A most interesting property

of the recursive expressions developed in Chapters II and IV is the fact

that in addition to being applicable to the problems of those chapters they

are also generally applicable to problems in which learning with a teacher

is possible and to problems in which no learning is possible.

It is the purpose of this chapter to formalize the statement of

these properties, and to specify the conditions under which they hold.

For convenience, we shall carry out the following discussion in terms of

the binary decision problem since with a few obvious changes the dis-

cussion would apply equally well to the more general solution.

A. SYSTEM STABILITY

Because the system requires both delay feedback and feedforward loops,

the question arises whether or not there is an input sequence which can

cause an output which will be unbounded. Although we cannot answer this

stability question in the normal control-system manner, we can provide a

satisfactory answer in probabilistic terms; that is, we can show that the

probability that the output will grow without bound is zero. We can

obtain this answer by showing that the sequence of outputs (Xklkl)

is a bounded martingale (Appendix C) when t'(XIe) is bounded for all

O and fixed X. Since bounded martingales have the property that they

are bounded for all sequences (Xk, ?k ) with probability one [Ref. 31],

we will have answered the stability question if we can show that L (XIO)
is bounded. But certainly this must be true unless the signal is "per-

fectly detectable," and this is a pathological situation which seems to

occur only in textbooks.
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As an example of the boundedness of £(XIG) consider example 1 of

Chapter II. In this case we identify e with the unknown amplitude, c.

0e(xlc) = exp 1 C2 B K_ 1B + cX K_ 1B) r; c 9r 2  (6.1)

Given any input vector Xo, this function is certainly bounded by

exp 1 r2B K1B + r2 IXoK1BI (6.2)

for all values of c.

B. CONVERGENCE OF THE CONTINUOUS SYSTEM

In Chapter II we described systems for the solution of problems in

which an important parameter was fixed but unknown. An important prop-

erty of such systems is the fact that they converge, so that in a sense

they "learn" the fixed value of the parameter. In Chapter IV we described

similar systems for similar problems in which the difference was the fact

that the parameter was time varying. Since the parameter varies with

time, we cannot discuss the steady-state performance of these systems, and

therefore the following discussion is applicable only to the systems of

Chapter II.

We investigate the convergence by again appealing to the martingale

nature of the output. In Appendix C we show that if a sequence of

functions (0k(X1 .... ,Xk)) exists such that

lim 4k(Xl,...X k) = with probability one (6.3)

then

lim t(X k k ) = (XIe) with probability one (6.4)

where t- is the true value of e. Thus the system (in the limit) per-

forms as well as one which was designed with knowledge of the signal.
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As an example of a problem in which the sequence (k ) exists, we
may consider the problem of detection of an unknown signal in noise.

Consider the linear estimate of S (the signal) given by

k^ 1
k kpH 1  x(

The observations X may be written as

Xi = N + YiS (6.6)

where

1 = if the signal is transmitted

0i if the signal is not transmitted

Thus the Xi  are identically distributed, independent random variables,

and by the strong law of large numbers,

fk
Pr im X = E(X = 1 (6.7)-  i=l

But E(Xi) = p(Hl)S; therefore, the sequence (Sk is an example of

the required sequence (0 k.

C. CONVERGENCE OF THE QUANTIZED SYSTEMI

In the previous chapter we pointed out that in many cases the set 0

of all possible values of the parameter e may not consist of a finite

number of discrete points and the optimal learning system may not be

realizable. In these cases under very general conditions (see Theorem 1,
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Chapter V) a subset of 0, say 0., exists and has the following
t

properties:

(i) For every G e 0 and E > 0 there exists a eq E 0Q such that

p(d*(e q~l^) ; pd(O 8 + E.q

(ii) There are only a finite number of points Q(E) in 0Q for any

E > 0.

In this section we shall determine a sufficient condition that a

system based on 0Q will converge in the following sense:

lim PQ(?\kle)= p (d q)IE) (6.8)
k-o

with probability one, where pQ( ke) = average risk of system based on

0Q after k observations when ^ is the true value of 0, and

p (d*eqA) = rain p(d*(ei)O). (6.9)

We shall show that this condition is met for most binary learning prob-

lems. Thus we will demonstrate that the suboptimum system is realizable

and has a performance which is arbitrarily close to the performance of

the optimum (unrealizable) system.

In order to determine a sufficient condition for convergence, we first

note that the system based on 0Q computes the functions

i(xlej) j = 1,2,...,Q

t3

As previously defined, e is the true value of 8, and p(d*(eq)I)

is the average risk of Bayes decision rule based on the assumption that

7 is true when e is actually true.
q
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and

k

p(X'i9) p0 (8)
Q k (6.10)P(a lk) =Q k

I R p(Xi lj )p (6)

j=l i=l

The system takes the sum of 
the products of 2(XIej) and P(jel\) as

the likelihood ratio:

Q

Q (x k) = ^(Gjl;\k) (x'Gj)(.n

j=l

The Bayes decision rule based on 6 requires a comparison of '(Xloq)q

to a threshold. Thus if P(eq hk ) converges to 1 when e is true,

Q~x'. ) will converge to L(XIG ) and the performance of the suboptimum

system will converge to 
a(d*(eq)Ie)• Theorem 2 states that if a minimum-

risk solution exists, the system 
will converge to this solution.

Theorem 2: If there is a 0q 6 0Q such that

p(d*(q ) < min p(d*(ej)Ie) (6.12)
e3 Q

and if the distribution of the observation 
under one hypothesis is

independent of the unknown parameter e [i.e., p(XIe,H 2) = P(XIH 2)',

then

lim P(eql?\k) 1 with probability one

k-
(6.13)

lir P(e INk ) = 0 with probability one for

k-*:* all e D 6 q
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This theorem is proven in Appendix C. From the proof it is clear that

when a unique minimum does not exist, then

lim j q( qIk) =1 with probability one
k- 0o q E DM

where 0M is the set of all points eq E DQ which have minimum average

risk. Since the points are equivalent from a performance standpoint, it

makes no difference in performance whether the system converges so that

Q(xjx )  e k (X[e) for some e) E M

or so that

Q(xxk) -eqI i(xleq) P(eqi )Q e~q i F I M k

Thus we may summarize by stating that if e is an important parameter

in the sense that knowing e allows the design of a better system, then
a system based on a discrete model for 0 will be finite, will exist,

and will converge in performance.

D. RELATIONSHIP BETWEEN LEARNING WITH A TEACHER AND LEARNING WITHOUT

A TEACHER

A very interesting relationship may be noted by referring back to

Fq. (2.12). By writing the recursive form as a product, we find that

k-l x

P(e(xiJi_) P po(0) (6.14)
i=l + i
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Thus Eq. (2.4) may be rewritten as

i(xkIk_1) = f(xkle) p(e) d(x .) + Jd (6.15)

When a teacher is available, we may choose to train the system on the

subset of the X which are known to contain a signal. In this case

p(H1 ) = 1, p(H2) = 0; hence a = 0, and the system computes a simpler

form

L(xk Ikl) = fS(xkl) pc(e) f (1 [T(il dO (6.16)
i=l

On the other hand, when we let c - c the system becomes the usual

nonlearning system

£(xklk-1) = L(xk) fl(xk~i) po(O) dG (6.17)

This is as it should be, since as p(H2) 1 1, p(Hl) -> 0 and we cannot

learn anything from the past.

Thus Eq. (2.12) describes a system applicable to all (parametrically

expressible) binary decision problems. It applies even to those in

which a learning sequence does not exist and to those in which a properly

classified sequence does exist. For this reason the systems of Figs. 2

and 3 may be thought of as canonical decision systems. These figures

provide the engineer with an insight into the relationship between the

solutions to many binary decision'problems, just as the tapped-delay-

line canonical form of the linear filter provides an insight into linear

filters.
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E. SUMMARY OF CHAPTER VI

In this chapter we have applied the results of Appendix C and Refs.

15, 18, and 20 to demonstrate that the learning systems are stochastically

stable and converge, and we have pointed out that the proposed systems

are generally applicable to the entire parametric class of decision prob-

lems including the "no learning," "learning with a teacher," and "learning

without a teacher" categories of problems.

We have also shown that in the cases where the unknown parameter is

useful in the sense that knowledge of the parameter makes it possible to

make more accurate decisions, a finite system always exists and converges

in performance to a point arbitrarily close to the performance of a sys-

tem with knowledge of the parameter.

Thus a system to learn without a teacher which has, from an engineering

viewpoint, all of the properties of the optimum system may be constructed

from a finite number of elements.
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VII. SUMMARY OF RESULTS AND SUGGESTIONS FOR FUTURE WORK

A. RESULTS

The primary results of this investigation have been summarized in

detail at the end of pertinent chapters, and are briefly described in

the form of the following four major contributions of this work. In the

first two items, a statistical model has been obtained which fits a large

class of interesting decision problems, and a method has been developed

to solve these problems. The third and fouirth contributions have been

related to the practicality of the theoretical systems.

1. A recursive relation has been developed which describes the struc-
ture of learning systems which are optimum for any length of
learning sequence. The problems which may be solved by such sys-
tems are restricted to the parametric class of decision problems
in which the functional form of the underlying probability measures
is known; however this class includes problems in which the learning
sequence is not previously classified, as well as problems in which
the a priori probability of occurrence of different classes of
observations is unknown.

2. The solution has been extended to problems in which the unknown
parameter is a time-varying random variable. It has been shown
that solutions to the time-varying problem are straightforward
modifications of solutions to fixed parameter problems.

Thus we have obtained a statistical model which fits a large class

of interesting decision problems and have developed a method to solve

these problems. The method results in a theoretical and functional

description of decision systems to solve the problems. Our third and

fourth contributions have been related to the practicality of the theo-

retical systems.

3. It has been demonstrated that in the case where the unknown param-
eter may take on only a finite number of values, the optimum
learning system requires a finite memory and is therefore real-
izable with a finite number of elements.

4. It has also been demonstrated that so long as the underlying prob-
ability measures are either discrete or absolutely continuous in
the observation space, and so long as the Bayes decision rule
depends upon the unknown1 parameter, a finite-memory suboptimum
system exists which has performance arbitrarily close to the per-

formance of the optimum system.
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B. PROBLEMS FOR ADDITIONAL RESEARCH

There are many interesting and important applications of decision

machines which learn, just as there are many important general problems

involving such machines. Some of the more outstanding problems are

given below as suggested areas for future research:

1. It is clear that in many applications the functional form of the
underlying probability measures is unknown, and thus many problems
may not be treated as parametric learning problems. A systematic
technique for the solution of such problems Would be extremely
useful, and an investigation of the possibility of treating such
problems by expanding the probability measures in a series of
known functions with unknown parameters and coefficients might
lead to such a technique.

2. In this study a finite-memory system which is optimum in an
engineering sense has been found by approximating the space of
the unknown parameter with a discrete space. An investigation of

the structure of the optimum system under a finite-memory con-
straint might lead to additional insight into the solution of

learning problems.

3. The investigation of performance bounds has been incomplete and
the bounds determined have been undesirably loose. This is.due

primarily to the fact that such bounds depend very much on the
particular learning problem being solved. It is presently neces-
sary to apply difficult, time-consuming numerical computation
techniques or to build or simulate the system in order to deter-
mine whether the resulting performance will be acceptable or to

compare the optimum system with some suboptimum system. It seems
clear that a simpler procedure for obtaining tighter bounds on
performance would be very useful.
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APPENDIX A. EVALUATION OF P(B k)

In order to evaluate P(Bk) we first note that Bk may occur only

when P S k) 1/2; therefore P(Bk) ; Pr (P(S?\k) ; 1/23. To evaluate

this bound we shall determine bounds on the moments of the distribution

of the random variable P(Sl?\k) and apply a Tchebysheff type of bound.

Thus in any particular case the resulting bound may be very loose;

however for the example of Chapter III it is clear that the bound is a

useful one.

Consider the estimate of S given by

m
S* S P(Silk (A.1)

Then

E S - k~2 EQS -) (A.

for any other estimate k based on " because S* is the least-mean-
k beas k i h es-en

square error estimate of S based on \. In particular, consider the

estimate

k

k p 1  Xi (A.3)
k kp1

ill

Now, if

(i) S + N with probability pl

X

N with probability p2  I-P1

(ii) Signal and noise are independent,

(iii) E(S) = E(N) = 0, and

(iv) The noise is bandlimited and white with variance a2
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then

2
on  PlP2

E[(S -.k)t(S - 0k) k 2 + -- 2 ES tS) (A.4)
kP1  kP1

and therefore

E((^ S*). S*)) 07 + PlP2E S)

Er(S - S - S) 2 (A.5)
kP1

We may evaluate E((S*-- Sk)) as follows. From (A.1) and the

fact that (Si t .S )/o 2  %jR [see text following Eq. (3.6)], we have

that

EtSk -) E(S tS p(S \)) (A.6)

and

E(S* k* E L Si P(SiI\) :S~ P(si)j (A.7)

t =i

Because of the symmetry, E([P(Sil k)]2 ) is constant for all Si S

so that

E(StS ) = EtSi [Ep(PIk)]2)+ (m-l) E([P(SiN k)]2)] (A.8)

By factoring and collecting terms we have

Ef(SE - S)5(OI - S-)) = E(StS (A.9)
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where

Pk = P(S!?k) (A.10a)

pik P(Si 1Ak) (A.lOb)

Now (rn-i) E(k) 0 and is small, so that

2
) On PlP2 E(StS)

E((l - Pk)2) 2 (A.1l)kpI E(St S)

or

1/l - -+ PiP2

k 2  (A.1)
1

where R = E(StS /.

In order to obtain a bound on P(Bk) we also require the first

moment of Pk" To bound this we write

m m

i Pik = I therefore Pik = - Pk (A.13)

Hence

pi (I P k)2 (A.14)
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But

(1?Pi P2 Z~ ~i (A. 15)
ik ik Pik jk

i~ii 141

so that

E((1 - ")} (rn-i) E (Pk) mi)m-2) E 2 (IP (A. 16)

From Eqs. (A.5) and (A.6) we have

E((i - P^)2) 1 - (rn-i) e(P'k (A.17)

k1 R

where

= i R (A.18)

so that

(ml( )E 2 (P 1 2(ili-i) EP 2  ~ (A.19)

ik kp 2Rl Pk
1

But since

var (P = E(Pk 2 E 2(Pk (A.20a)
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we can write

22 1

Finally, by utilizing (A.13) we may bound the first moment as

By utilizing this first-moment bound and the previous bound on the second

moment and applying a Tchebysheff-type bound [Ref. 34, p. 93], we have

Pr ( 1 2): 1

(^k (QPkRI + ) - 4  m- kRt 11/2 ) Pi (A.23)

which is valid so long as kp 2RI > 16. By using (A.18) we have

Pr (P ~ 4(1 + p 1P2R)

Okl{PlkR + 8(1 + p pR) - 4[-mlk plP 2 R)Jl1/2

(A.24)

Because p IkR > 8(1'+ p 1 p2R) for large k, we may take as our bound

for pl1P(B k),

Pi P(B k -4(l + p p2R) -12(.5

plpk pkR - 12 p-lpkR)]1+ p(A.25)
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APPENDIX B. PROOF OF THEOREM 1

For convenience in presenting this proof, Theorem 1 of Chapter V

is repeated below.

Theorem 1. Designate by 0 the space of all possible values of

the vector parameter 0, and let the range of each coordinate of

0 be bounded. Then if p(XIe,H 2 ) is independent of 0, and

p(XIO,H1 ) is a continuous function of 0 for all 0 6 0 and all

X, there exists a subset of 0, say Q = (01,82,..., 0 Q, with

a finite number, Q, of discrete values of 0 such that for any

e> 0 and all 0 6 0 there is a 0 0 Q which satisfies

p(d*(O q)10) ; pd(-j- + E

where p(d (0q)I^) is the average risk of the Bayes decision rule

based on the assumption that 0q is true (d*(eq)) when is

true.

Proof. If p(XjO,HI) is a continuous function of 0, then so also is

the integral over any range of X. That is

Sp(xfO,Hl) dX

is a continuous function of 0. Therefore, given any E' > 0, there is

a 5 > 0 such that if 0 and 0. both lie within a sphere of radius

b, then

f p(X8i0,H 1 ) dX - f p(XlejpH1) dX < E'
R ~ RI

We may therefore choose as a possible set ( Q), all the points in 0

which are distance 8 along some coordinate from an arbitrary point.

Since the range of values of each coordinate is bounded, there will be
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only a finite number of points in this set; furthermore for every 0

in 0 there will be a member, say e , in (D such that

fR P(x1GeqVH) dX - f p(XI^B,H) dX <

The Bayes decision rule based on e qV d*(e q), divides the observation

space into two mutually exclusive regions R qand R q. If X6 Rq

then decision rule d*(e q) results in the decision to accept hypothesis

1. If X 6R q, then the decision is to accept H 2*Hence the average

risk p(d*(O q )IOq) when q , is true is given by

p(d*eql8q) = pP CX 6e q f6 qPH I) + Lp 2P(X 6R q leq H 2)

But P(X E R qe 10H 2 = P(X E R qIH 2 ) because the distribution of X is

independent of G when H 2is true. Hence we must have

R ( iq lB,H H1) + Lp 2P(X 6 R qH2 ) - P1 E < P(d*eq q )J

q q()I) < plP(X e R eR 3 + LpP(X 2) +H 3~PIE'

lp~d*(eq)Ieq) 0 ~ (q)I101 < PIE'(Bl

Similarly, by starting with p (d*(eMe) w hv

-pd(010 p(d*(ie) 1J < PlE' (B.2)
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Because d * is a Bayes rule, the following must hold:

By inserting (B.2) in (B.3) we obtain

p(d*eqO ) p\eJ) + 0 (B.5)

and inserting (B.1.) in (B.4) we obtain

p(d*O-IE^) ; p(d*eqf) + p 'E (B.6)

so that

lp(d*eq,)eq) - p(d*(^O)10)l p 1  (B.7)

The combination of (B.1) and (B.7) yields

p~d*( 0 - p(d*I94) 9 2plel

and thus by choosing c' < c/2p1 we have proven the theorem.
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APPENDIX C. PROOFS OF STABILITY AND CONVERGENCE

1. System Stability

In order to prove that the system is stable we first prove a more

general theoremt regarding a property of the probability measure Pk(8)=

P(OX 1 1 .... ,Xk), which is the cumulative distribution function correspond-

ing to the density P(eI\).

Theorem 3. Any sequence (glg 2,. ..,gn+l) such that

gk f f(e) dPk(e)

where

Pk(e) Z P(eIXl,...,Xk) 1 9 k n+l (C.2)

is a bounded martingale if

(i) f(e) is any nonnegative Lebesgue measurable function,

(ii) max f(e) = M < -.

Proof. A martingale is defined [Ref. 35, p. 2931 as a sequence of random

variables tXI,X 2 .... Xn,Z) such that

(iii) E (jzj) <

(iv) Xn = E(ziwl,w 2 ... ,wn) for some set of random variables (wi).

Thus to prove the martingale property, it is sufficient to prove

a. E(Ign+1i1) < -

b. gn = E(g n+1X' ...'Xn)

tThis theorem is due to Daly [Ref. 20]; the proof is repeated for con-

venience.

In order to include the case where Pk(e) is a step function, the

integral here is meant in the Lebesgue-Stieltjes sense (see, e.g.,

Ref. 1).
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First we prove (a). Since f(e) is nonnegative and bounded by M

on 0, and f dPn+l(e) = 1, then gn+l is nonnegative and bounded by

M; i.e.,

0 = ff(0) dPn+l(e) !f M dPn+1 (e) M fdP n+l(0) = M < c

(C.3)

hence

Ign+ll I M <c (C.4)

and

E(g n+i) M < (C.5)

Since this is true for all n, we also have

lim EIgn 1) ; lim M = M <cc (C.6)
n-,co n- o

This relation will be required in the proof of the boundedness of the

sequence.

To prove (b) we must showt

E f f(G) p(Ix 1 ,. .. ,Xn+I) dO X1 ... ,Xn) =fO f(e) p(GIx I ... ,n) dO

(C.7)

where the expectation is over the space X of X n+I  We may write

E(g n+ 1 XI,.. Xn = f [f f(e) p(eXI,...,X n+) d]

P(XXn+I 1X,...,Xn)-dXn+1  (C.8)

tIn this case, since we are only interested in finite n, we need not
contend with step functions, hence we write pk(e) = dPk(G)/dO for
easier manipulation.
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Interchanging the order of integration over 0 and X, we have:

E~g ~lP. .'X Ia) p (G1X I ' '.. '.X n )  p (x l p ' '' x n Ix n + l )

En+ll, .. Xnl f(O P(Xl, ....,Xn

P(Xn+l) dXn+l] d@

f f f(e) p(elxi, .... xn) de

= gn (C.9)

Thus the sequence (gn; n = 1,2,...) is a martingale. Doob [Ref. 35,

p. 319] shows in theorem VII, 4.1 that if the sequence (gn; n 1) is

a martingale, and if lim E (Ign1) = M < -, then lim gn = g exists
with probability one. Thus the sequence (g; n -1 does indee con-

verge to a limit with probability one.

This theorem is directly applicable to the proof of system stability.

We make the identification f(O) = i(XIO). Then f(O) will be a non-

negative Lebesgue measurable function of e. If in addition I(XIO) is

a bounded function of e for all X, then the sequence (XkIl\) is

a bounded martingale and lim Z(Xk jl) < with probability one.

2. Convergence of the Optimal System

In order to find the limit to which the system converges we first

state a theorem due to Braverman [Ref. 15].

Theorem 4. If there exists a sequence of functions (0 k(Xl,...,Xk))

such that lim 4 k = e with probability one, where 8 is the true
k-,co

value of 0, then

lim P(ejXl,...,Xk) = (C.10)

- 0 -< 0
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By 0 < e we mean that every coordinate of e is less than every

coordinate of e since e may be a vector-valued parameter.

Proof. Braverman proves this theorem for the case of learning with a

teacher, drawing on the fact that if the sequence (XI) is known to

arise from a particular class, then

= f g(e) dPk(e) (c.ln)

is a bounded martingale if g(e) is bounded and Lebesgue measurable

on D.

We have already proven that gk is a bounded martingale even when

(x i) does not arise from a single class. Thus if we consider the

sequence of functions

Qk (Ee) 4 E dP k(e}) (.12)

this sequence will be a bounded martingale because it can be written as

Pk(Ee) = f IE dPk(e) (C.13)

where

Ii e Ee

IE ( 0 E 8  (C.14)

is the indicator function of the set (E ) ; hence

lim Pk(Ee) = Po(E ) with probability one (C.15)

k-E4
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Loeve [Ref. 361 points out that if the sequence (X1 ,X2P...,Xn,Z)

is a bounded martingale, then E(z!X1,...,Xn) converges with probability

one to z. If we let z = IE , then the sequence (Pk(Ee)) must con-

verge to either 
1 or 0.

The existence of the convergent sequence (k) must imply that

Pk(Ee) converges to 1 when e is contained in E., and converges to 0

when e is not in Ee .

Thus P (0) must be a (multidimensional) step function with a dis-

continuity at 6 with probability one.

We may extend this theorem to the following corollary.

Corollary. If there exists a sequence (0k(Xl,...,Xk) such that

lim k = a with probability one (C.16)
k-

then

lim f f(O) dPk(e) = f(O) with probability one (C.17)
k--,-

if f(O) is continuous on 0.

This follows from the above theorem and the fact that

lim f f(G) dPk(e) = f f(O) dP0o(e) with probability one (C.18)
k-co f

if f(O) is continuous on 0 and P() has bounded variation on 0.

By definition of the Lebesgue-Stieltjes integral, if Pc,(G) is a step

function at 0, then

J f(O) dP (e) = f(6) (0.19)
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Hence if £(Xle) is a continbous function of 0, we have the fact that

imf ~(~)dk~ i (XI'e) with probability one (0.20)

(where 0 is the true value of e) if the sequence (0k)exists.

3. Convergence o ' the Quantized System

In order to prove Theorem 2, Chapter V we first determine a sufficient

condition for convergence as follows.

Theorem 5. If

E(log p(Xle) - log p(xIe.i)1^0) > 0 (C.21)

for some 0 q 6 and every e0 i e OQ a e q' then

lim P(O j?\ k 1 with probability one (C.22a)
q k

lim P(o k~ 0 with probability one (C.22b)
k-

Proof. If

E(log p(Xje q log p(xfe))= > 0 (C.23)

for all 0.E :Q~ 0. / 0q F ( then

lim klo g IPXl q with probability one (0.24)
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That is, for every E > 0, there exists a k such that

Pr LUB log (!-~ -kP 1 (0.25)

where LUB means least upper bound. But

k Fp(xfe)O
LUB log -kP <6e (C.26)

i=l L'''

implies that

k rp(xiIo) e-k ( e

LUB exp log Fp( ' exp (-kp) < e (e - 1) (0.27)

Therefore, for all 5 > 0, there exists a k such that

Pr LUB k P(Xi a )- e < (C.28)

or, for every 5' > 0 there exists a k such that

Pr LUB k peX <SJ 1 (0.29)
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The function being computed is P(O l1?k) which may be written as below.

k p ( X i l o ) p o ( 0 )

For each 8j Qand each k, define jk such that

P(xil eq q

LUB jIk pQX kq j (C.30)

then

P (e j)LBk jk o < ' (E)

7 p( lle ) (e)

i= j=l q 0q

(0.32)

Hence for every c > 0 there exists a k such that

Similarly,

jl i l jlq j C.31)

(0.34)
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so that by choosing

max k < o(q
jk Q-1 P 0(

we obtain

LUB I1 - (OqV1k)I < (C.35)

Therefore, for all C > 0, there exists a k such that

Pr( LUB J^P(e q k 11< )= (C.36)

So that

lim P(eq k ) = I with probability one (C.37a)
k- o

lim P(O jk ) = 0 with probability one (C.37b)
k-J

which proves Theorem 5.

Theorem 2. If there is a e @Q such that

p(d*()I ) < min p(d*(e.)1^) (6.12)

and if the distribution of the observation under one hypothesis is

independent of the unknown parameter e [i.e., p(XJO,H 2 ) = p(XIH 2 )],

then

lim P(eqI~k) = 1 with probability one

(6.13)

lim P(efk) = 0 with probability one for
k - all e 1 1.i q
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Proof. Condition (6.12) implies that

pq( ) d > p d (C.38)
a a

where pq(q) = probability density of i(XIOq)

a = any real number > 0

To prove this, we observe that (6.12) implies

Lp 2 f pq( eIH2) d2 + P1 p q(13IH 1 ) d < Lp 2  pJ(Z 4 H2 di

+ p1 f pj (1IH 1) di

(c.39)

where 2 = Lp2/p1

Pi= a priori probability of Hi being true

By rearranging this inequality, and changing limits, we have

p 1 f [Pq(iIH1) p(i )] d > LP2 [pq (IH2) - pj(1H 2)] dI

(c.40)

for all 2 > 0. Now assume that

a pq(; f a P i d (C.41)

0 0
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for some real number a . Then
0

f 1lpq()IH + 2q (I 2 f [pip(J!H 1) + p 2p (2JH 2) 1 d2
0 o

(C.42)

or

i: [Pq (1IH1) - p(LJH I)] dI 9-p 2 f [Pq( IH 2) p P1G3H 2)1

0 0

(C.43)

Combining (C.40) and (C.43) yields

Lp2 [pq( H 2) - p (J2)]di < - p p ( lH) - i (.ejH )] di
f 2 a q 22

0

(c.44)

for all 7 > 0. Suppose that ao > 0, then we can choose 7 = a0 ,

hence LoP 2 = aopl, and (C.44) becomes

aoPl < - p2

Hence a cannot be positive, and for all positive real numbers a,
0

(C.38) must hold.

Consider the function

E(log p(xe q) - log p(xl~e)[) E ,j
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It may be written as

E qj = E(log [a + 2(Xle q) - log [a + £(xle) ]I10

+ E (log [pi P(xleq#H 2)] -log [Plp(x Ie0,H 2)]1e0

where a=P 2/Pl. But since p(xeq PH 2) = p(xj. , 2 ) = p(XIH 2) the

second term on the right is zero. The function log [a + L1; £ 0 is

monotonically increasing and continuous; hence it may be approximated by

a sum of simple functions:

N

lim I Pi0 = log [a + 2] almost everywhere

N- i=0

where

1 when £ iA

4) i = 0 w h e n B < i

= log [a6 + iA] - log [a + (i-1)tn']

so that

E q = log [a + £1 (p (2) - p.i(£)) dJ6

N

'L pi'j(2 ) (Pq(£) - j(/")) d
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N 00

N-wo i=l
6-0O

But the sum of a set of positive numbers 
must be positive so that

E(log p(XIeq) - log p(XIej)) > 0

By Theorem 5 this implies the convergence 
of P(eql k) to 1, and proves

Theorem 2.
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